login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form 2^p - 1, where p is a prime number that is not the sum, minus 1, of a Pythagorean triple.
3

%I #9 Oct 20 2024 03:34:36

%S 3,7,31,127,8191,131071,524287,2147483647,2305843009213693951,

%T 170141183460469231731687303715884105727,

%U 6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151

%N Primes of the form 2^p - 1, where p is a prime number that is not the sum, minus 1, of a Pythagorean triple.

%C Primes in A136005.

%H Amiram Eldar, <a href="/A136007/b136007.txt">Table of n, a(n) for n = 1..13</a>

%F a(n) = 2^A152961(n) - 1. - _Amiram Eldar_, Oct 20 2024

%t q[n_] := n == 2 || Module[{d = Divisors[(n+1)/2]}, AllTrue[Range[3, Length[d]], d[[#]] >= 2 * d[[#-1]] &]]; 2^Select[MersennePrimeExponent[Range[13]], q] - 1 (* _Amiram Eldar_, Oct 20 2024 *)

%Y Cf. A000079, A000668, A136002, A136003, A136005, A152961.

%K nonn

%O 1,1

%A _Omar E. Pol_, Dec 17 2007

%E Extended by _Ray Chandler_, Dec 13 2008