%I #25 Feb 13 2023 18:01:11
%S 21,80,1972,26108,473297,7854396,144622191,2620370968
%N Number of primes with 2n digits made of adjacent primes with 2 digits.
%C Number of primes of the form: .. dd3dd2dd1dd0 = dd0 * 10^0 + dd1 * 10^2 + dd2 * 10^4 + dd3 * 10^6 + ..., where dd0, dd1, dd2, dd3, ... are primes with two digits. The i-th element of the sequence is the number of primes with i * 2 digits.
%C Approximation for the sum of the sequence up to a(k) for large values of k: Sum_{i=1..k} a(i) = 10^(2*k) / (2*k*log(10)) * (21/100)^(k-1).
%e a(2) = 80 because there are 80 numbers of the form dd1dd0 with dd0, dd1 prime numbers of 2 digits, i.e.: 1117, 1123, 1129, 1153, 1171, 1319, 1361, 1367, ..., 9767.
%o (Python)
%o from itertools import product
%o from sympy import isprime, primerange
%o def a(n):
%o p2 = list(map(str, primerange(10, 100)))
%o return sum(1 for p in product(p2, repeat=n) if isprime(int("".join(p))))
%o print([a(n) for n in range(1, 6)]) # _Michael S. Branicky_, Feb 13 2023
%Y Cf. A135944, A135946.
%K nonn,base
%O 1,1
%A _Giorgio Balzarotti_ & _Paolo P. Lava_, Dec 07 2007
%E a(7) from _Chai Wah Wu_, Nov 29 2015
%E a(8) from _Michael S. Branicky_, Feb 12 2023