login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sums of triangle A135858.
5

%I #33 Aug 11 2022 03:40:59

%S 1,4,13,34,73,136,229,358,529,748,1021,1354,1753,2224,2773,3406,4129,

%T 4948,5869,6898,8041,9304,10693,12214,13873,15676,17629,19738,22009,

%U 24448,27061,29854,32833,36004,39373,42946,46729,50728,54949

%N Row sums of triangle A135858.

%C Number of binary 3 X (n-1) matrices such that each row and column has at most one 1. - _Dmitry Kamenetsky_, Jan 20 2018

%H Vincenzo Librandi, <a href="/A135859/b135859.txt">Table of n, a(n) for n = 1..1000</a>

%H R. J. Mathar, <a href="/A247158/a247158.pdf">The number of binary matrices...</a>, Table 1 column 3.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F Row sums of triangle A135858. Binomial transform of [1, 3, 6, 6, 0, 0, 0, ...].

%F G.f.: x*(1+3*x^2+2*x^3) / (1-x)^4. - _R. J. Mathar_, Apr 04 2012

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - _Vincenzo Librandi_, Jun 29 2012

%F a(n) = n^3 - 3*n^2 + 5*n - 2. - _R. J. Mathar_, Oct 20 2017

%F E.g.f.: 2 - (2 - 3*x - x^3)*exp(x). - _G. C. Greubel_, Aug 11 2022

%e a(3) = 13 = sum of row 3 terms of triangle A135858: (7, + 5 + 1).

%e a(4) = 34 = (1, 3, 3, 1) dot (1, 3, 6, 6) = (1 + 9 + 18 + 6).

%p seq(5*n - 2 + n^3 - 3*n^2, n=1..10^2); # _Muniru A Asiru_, Jan 24 2018

%t CoefficientList[Series[(1+3*x^2+2*x^3)/(x-1)^4,{x,0,40}],x] (* _Vincenzo Librandi_, Jun 29 2012 *)

%o (Magma) I:=[1, 4, 13, 34]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // _Vincenzo Librandi_, Jun 29 2012

%o (GAP) List([1..10^4], n-> 5*n - 2 + n^3 - 3*n^2); # _Muniru A Asiru_, Jan 24 2018

%o (SageMath) [n^3 -3*n^2 +5*n -2 for n in (1..50)] # _G. C. Greubel_, Aug 11 2022

%Y Cf. A135858.

%K nonn,easy

%O 1,2

%A _Gary W. Adamson_, Dec 01 2007