Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Feb 07 2022 02:31:14
%S 1,1,2,1,4,2,1,6,6,4,1,8,12,16,4,1,10,20,40,20,8,1,12,30,80,60,48,8,1,
%T 14,42,140,140,168,56,16,1,16,56,224,280,448,224,128,16,1,18,72,336,
%U 504,1008,672,576,144,32
%N A007318 * a triangle with (1, 2, 2, 4, 4, 8, 8, ...) in the main diagonal and the rest zeros.
%C This sequence is jointly generated with A117919 as a triangular array of coefficients of polynomials v(n,x): initially, u(1,x) = v(1,x) = 1; for n > 1, u(n,x) = u(n-1,x) + x*v(n-1)x and v(n,x) = 2*x*u(n-1,x) + v(n-1,x). See the Mathematica section. - _Clark Kimberling_, Feb 26 2012
%C Subtriangle of the triangle (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 19 2012
%H Reinhard Zumkeller, <a href="/A135837/b135837.txt">Rows n = 1..150 of triangle, flattened</a>
%F Binomial transform of a triangle with (1, 2, 2, 4, 4, 8, 8, ...) in the main diagonal and the rest zeros.
%F Sum_{k=1..n} T(n, k) = A001333(n).
%F From _Philippe Deléham_, Mar 19 2012: (Start)
%F As DELTA-triangle with 0 <= k <= n:
%F G.f.: (1-x+2*y*x^2-2*y^2*x^2)/(1-2*x+2*y*x^2-2*y^2*x^2).
%F T(n,k) = 2*T(n-1,k) - T(n-2,k) + 2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2, T(n,k) = 0 if k < 0 or if k > n. (End)
%F G.f.: x*y*(1-x+2*x*y)/(1-2*x-2*x^2*y^2+x^2). - _R. J. Mathar_, Aug 11 2015
%F From _G. C. Greubel_, Feb 07 2022: (Start)
%F T(n, n) = A016116(n).
%F T(n, 2) = 2*(n-1).
%F T(n, 3) = 2*A000217(n-2). (End)
%e First few rows of the triangle:
%e 1;
%e 1, 2;
%e 1, 4, 2;
%e 1, 6, 6, 4;
%e 1, 8, 12, 16, 4;
%e 1, 10, 20, 40, 20, 8;
%e 1, 12, 30, 80, 60, 48, 8;
%e ...
%e From _Philippe Deléham_, Mar 19 2012: (Start)
%e (1, 0, 0, 1, 0, 0, ...) DELTA (0, 2, -1, -1, 0, 0, ...) begins:
%e 1;
%e 1, 0;
%e 1, 2, 0;
%e 1, 4, 2, 0;
%e 1, 6, 6, 4, 0;
%e 1, 8, 12, 16, 4, 0;
%e 1, 10, 20, 40, 20, 8, 0;
%e 1, 12, 30, 80, 60, 48, 8, 0; (End)
%t (* First program *)
%t u[1, x_]:= 1; v[1, x_]:= 1; z = 13;
%t u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
%t v[n_, x_]:= 2 x*u[n-1, x] + v[n-1, x];
%t Table[Expand[u[n, x]], {n, 1, z/2}]
%t Table[Expand[v[n, x]], {n, 1, z/2}]
%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t TableForm[cu]
%t Flatten[%] (* A117919 *)
%t Table[Expand[v[n, x]], {n, 1, z}]
%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t TableForm[cv]
%t Flatten[%] (* A135837 *) (* _Clark Kimberling_, Feb 26 2012 *)
%t (* Second program *)
%t T[n_, k_]:= T[n, k]= If[k<1 || k>n, 0, If[k==1, 1, If[k==n, 2^Floor[n/2], 2*T[n-1, k] - T[n-2, k] + 2*T[n-2, k-2]]]];
%t Table[T[n, k], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Feb 07 2022 *)
%o (Haskell)
%o a135837 n k = a135837_tabl !! (n-1) !! (k-1)
%o a135837_row n = a135837_tabl !! (n-1)
%o a135837_tabl = [1] : [1, 2] : f [1] [1, 2] where
%o f xs ys = ys' : f ys ys' where
%o ys' = zipWith3 (\u v w -> 2 * u - v + 2 * w)
%o (ys ++ [0]) (xs ++ [0, 0]) ([0, 0] ++ xs)
%o -- _Reinhard Zumkeller_, Aug 08 2012
%o (Sage)
%o def T(n,k): # A135837
%o if (k<1 or k>n): return 0
%o elif (k==1): return 1
%o elif (k==n): return 2^(n//2)
%o else: return 2*T(n-1, k) - T(n-2, k) + 2*T(n-2, k-2)
%o flatten([[T(n,k) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Feb 07 2022
%Y Cf. A000217, A001333 (row sums), A007318, A016116, A117919, A135838.
%K nice,nonn,tabl
%O 1,3
%A _Gary W. Adamson_, Dec 01 2007