Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Nov 11 2016 21:49:10
%S 1,0,0,56,126,2016,16632,181368,2091375,26442416,361224864,5305691664,
%T 83351722636,1394398680192,24744942004464,464237094657744,
%U 9179911341932877,190814604739422048,4159156093506930208
%N Sixth column (k=5) of triangle A134832 (circular succession numbers).
%C a(n) enumerates circular permutations of {1,2,...,n+5} with exactly five successor pairs (i,i+1). Due to cyclicity also (n+5,1) is a successor pair.
%D Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 183, eq. (5.15), for k=5.
%H G. C. Greubel, <a href="/A135803/b135803.txt">Table of n, a(n) for n = 0..444</a>
%F a(n) = binomial(n+5,5)*A000757(n), n>=0.
%F E.g.f.: (d^5/dx^5) (x^5/5!)*(1-log(1-x))/e^x.
%e a(0)=1 because from the 5!/5 = 24 circular permutations of n=5 elements only one, namely (1,2,3,4,5), has five successors.
%t f[n_] := (-1)^n + Sum[(-1)^k*n!/((n - k)*k!), {k, 0, n - 1}]; a[n_, n_] = 1; a[n_, 0] := f[n]; a[n_, k_] := a[n, k] = n/k*a[n - 1, k - 1]; Table[a[n, 5], {n, 5, 25}] (* _G. C. Greubel_, Nov 10 2016 *)
%Y Cf. A135802 (column k=4), A135804 (column k=6).
%K nonn,easy
%O 0,4
%A _Wolfdieter Lang_, Jan 21 2008