login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: A(x) = Sum_{n>=0} exp( n*(n-1)/2 * x ) * x^n / n!.
6

%I #9 Nov 05 2016 12:51:07

%S 1,1,1,4,19,131,1156,12622,166825,2600677,47038456,974165336,

%T 22829939089,599668759483,17512623094240,564613124026876,

%U 19972670155565761,771019774737952313,32326390781950804048

%N E.g.f.: A(x) = Sum_{n>=0} exp( n*(n-1)/2 * x ) * x^n / n!.

%H G. C. Greubel, <a href="/A135742/b135742.txt">Table of n, a(n) for n = 0..250</a>

%F a(n) = Sum_{k=0..n} C(n,k) * ( k*(k-1)/2 )^(n-k).

%F O.g.f.: Sum_{n>=0} x^n / (1 - n*(n-1)/2 * x)^(n+1). - _Paul D. Hanna_, Jul 30 2014

%t Flatten[{1, Table[Sum[Binomial[n, k]*Binomial[k, 2]^(n - k), {k, 0, n}], {n,1, 25}]}] (* _G. C. Greubel_, Nov 05 2016 *)

%o (PARI) {a(n)=sum(k=0,n,binomial(n,k)*(k*(k-1)/2)^(n-k))}

%o for(n=0,25,print1(a(n),", "))

%o (PARI) {a(n)=n!*polcoeff(sum(k=0,n,exp(k*(k-1)/2*x +x*O(x^n))*x^k/k!),n)}

%o for(n=0,25,print1(a(n),", "))

%o (PARI) /* From Sum_{n>=0} x^n/(1 - n*(n-1)/2*x)^(n+1): */

%o {a(n)=polcoeff(sum(k=0, n, x^k/(1-k*(k-1)/2*x +x*O(x^n))^(k+1)), n)}

%o for(n=0,25,print1(a(n),", "))

%Y Cf. variants: A135743, A135744, A135745, A135746.

%K nonn

%O 0,4

%A _Paul D. Hanna_, Nov 27 2007