login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*(7*n-2).
10

%I #37 Sep 08 2022 08:45:32

%S 0,5,24,57,104,165,240,329,432,549,680,825,984,1157,1344,1545,1760,

%T 1989,2232,2489,2760,3045,3344,3657,3984,4325,4680,5049,5432,5829,

%U 6240,6665,7104,7557,8024,8505,9000,9509,10032,10569,11120,11685,12264,12857,13464

%N a(n) = n*(7*n-2).

%H G. C. Greubel, <a href="/A135703/b135703.txt">Table of n, a(n) for n = 0..2500</a>

%H L. Hogben, <a href="https://archive.org/details/chanceandchoiceb029729mbp/page/n39">Choice and Chance by Cardpack and Chessboard</a>, Vol. 1, Max Parrish and Co, London, 1950, p. 36.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 5*n + 14*binomial(n,2).

%F From _R. J. Mathar_, Apr 21 2008: (Start)

%F O.g.f. x*(5+9*x)/(1-x)^3.

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)

%F a(n) = a(n-1) + 14*n - 9 (with a(0)=0). - _Vincenzo Librandi_, Nov 24 2010

%F a(n) = 4*A000217(n) + A051624(n). - _Bruno Berselli_, Feb 11 2011

%F E.g.f.: x*(5 + 7*x)*exp(x). - _G. C. Greubel_, Oct 29 2016

%t Array[ #*(7*# - 2) &, 50, 0] (* _Zerinvary Lajos_, Jul 10 2009 *)

%o (PARI) a(n)=n*(7*n-2) \\ _Charles R Greathouse IV_, Oct 07 2015

%o (Magma) [n*(7*n-2): n in [0..50]]; // _G. C. Greubel_, Jul 04 2019

%o (Sage) [n*(7*n-2) for n in (0..50)] # _G. C. Greubel_, Jul 04 2019

%o (GAP) List([0..50], n-> n*(7*n-2)) # _G. C. Greubel_, Jul 04 2019

%Y Cf. index to numbers of the form n*(d*n+10-d)/2 in A014106.

%Y Cf. A185019.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Mar 04 2008