Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 08 2022 08:45:32
%S 1,2,8,32,512,2048,32768,131072,2097152,134217728,536870912,
%T 34359738368,549755813888,2199023255552,35184372088832,
%U 2251799813685248,144115188075855872,576460752303423488,36893488147419103232,590295810358705651712,2361183241434822606848,151115727451828646838272
%N a(n) = 2^(prime(n) - 2).
%H G. C. Greubel, <a href="/A135620/b135620.txt">Table of n, a(n) for n = 1..465</a>
%F a(n) = 2^(A000040(n)-2) = 2^(A040976(n)) = 2^A000040(n)/4 = A061286(n)/2.
%t Table[2^(Prime[n] - 2), {n,1,25}] (* _G. C. Greubel_, Oct 23 2016 *)
%o (Magma) [2^(NthPrime(n)-2): n in [1..25]]; // _Vincenzo Librandi_, Oct 23 2016
%o (PARI) a(n) = 2^(prime(n)-2); \\ _Michel Marcus_, Oct 23 2016
%Y Cf. A000040, A040976, A061286.
%Y Partial differences of A135482.
%K easy,nonn
%O 1,2
%A _Omar E. Pol_, Mar 01 2008