%I #16 Feb 02 2024 09:06:47
%S 1,0,1,0,0,2,0,0,2,4,0,0,1,9,10,0,0,0,12,36,26,0,0,0,10,76,140,76,0,0,
%T 0,6,116,420,540,232,0,0,0,3,138,915,2160,2142,764,0,0,0,1,136,1605,
%U 6230,10766,8624,2620,0,0,0,0,116,2372,14436,39130,53312,35856,9496,0,0,0,0
%N Triangle T(n,k) read by rows: number of k X k symmetric (0,1)-matrices with exactly n entries equal to 1 and no zero rows or columns.
%H Andrew Howroyd, <a href="/A135589/b135589.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50)
%F G.f. of column k: Sum_{j=0..k} (-1)^(k-j) * binomial(k,j) * (1 + x)^j * (1 + x^2)^binomial(j,2). - _Andrew Howroyd_, Feb 01 2024
%e 1;
%e 0, 1;
%e 0, 0, 2;
%e 0, 0, 2, 4;
%e 0, 0, 1, 9, 10;
%e 0, 0, 0, 12, 36, 26;
%e 0, 0, 0, 10, 76, 140, 76;
%e 0, 0, 0, 6, 116, 420, 540, 232;
%e ...
%o (PARI) T(n)=my(A=O(x*x^n), v=vector(n+1, k, k--;Col(A+(1+x+A)^k*(1+x^2+A)^binomial(k,2)))); Mat(vector(n+1, k, k--; sum(j=0, k, (-1)^(k-j)*binomial(k,j)*v[1+j])))
%o { my(M=T(10)); for(i=1, #M, print(M[i,1..i])) } \\ _Andrew Howroyd_, Feb 01 2024
%Y Main diagonal gives A000085.
%Y Row sums give A135588.
%Y Column sums give A322661.
%K nonn,tabl
%O 0,6
%A _Vladeta Jovovic_, Feb 25 2008