Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jul 06 2022 19:40:04
%S 3,7,1,15,1,3,1,31,1,3,1,7,1,3,1,63,1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,
%T 127,1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,31,1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,
%U 255,1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,31,1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,63,1,3
%N a(n) = 2^A135560(n) - 1.
%H R. Zumkeller, <a href="/A135561/b135561.txt">Table of n, a(n) for n = 1..10000</a>
%F a(2^k) = 2^(k+2) - 1; a(2^k + 2^(k-1)) = 2^k - 1. - _Reinhard Zumkeller_, Mar 02 2008
%t f[n_] := 1 + IntegerExponent[n, 2] + Sum[(-1)^(n - k - 1)*Binomial[n - 1, k]* Sum[Binomial[k, 2^j - 1], {j, 0, k}], {k, 0, n - 1}]; Table[2^f[k] - 1, {k, 1, 20}] (* _G. C. Greubel_, Oct 17 2016 *)
%o (Python)
%o def A135561(n): return (1<<(m:=(~n & n-1)).bit_length()+int(m==n-1)+1)-1 # _Chai Wah Wu_, Jul 06 2022
%Y Cf. A007814, A036987, A091090, A135534, A135560.
%K nonn,easy
%O 1,1
%A _N. J. A. Sloane_, Mar 01 2008
%E More terms from _Reinhard Zumkeller_, Mar 02 2008