Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Oct 17 2016 19:43:09
%S 1,2,3,3,5,4,7,4,7,6,11,5,9,8,15,5,9,8,15,7,13,12,23,6,11,10,19,9,17,
%T 16,31,6,11,10,19,9,17,16,31,8,15,14,27,13,25,24,47,7,13,12,23,11,21,
%U 20,39,10,19,18,35,17,33,32,63,7,13,12,23,11,21,20,39,10,19,18,35,17,33,32,63
%N Guy Steele's sequence GS(4,6) (see A135416).
%H G. C. Greubel, <a href="/A135533/b135533.txt">Table of n, a(n) for n = 1..1000</a>
%F From _Don Knuth_, Mar 01 2008: (Start)
%F a(n) = Sum_{k=0..A000523(n)} 2^A000120(n mod 2^k).
%F a(n) = 1 + A000523(n) * 2^A000120(n) - A135586(n). (End)
%p GS(4,6,200); [see A135416].
%t i = 4; j = 6; Clear[a]; a[1] = 1; a[n_?EvenQ] := a[n] = {0, 1, a[n/2], a[n/2]+1, 2*a[n/2], 2*a[n/2]+1}[[i]]; a[n_?OddQ] := a[n] = {0, 1, a[(n-1)/2], a[(n-1)/2]+1, 2*a[(n-1)/2], 2*a[(n-1)/2]+1}[[j]]; Array[a, 79] (* _Jean-François Alcover_, Sep 12 2013 *)
%o (PARI) a(n)=if(n<4, return(n)); (1+n%2)*a(n\2) + 1 \\ _Charles R Greathouse IV_, Oct 17 2016
%Y Cf. A135416.
%K nonn,easy
%O 1,2
%A _N. J. A. Sloane_, based on a message from Guy Steele and _Don Knuth_, Mar 01 2008