login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3*a(n-1) + 4*a(n-2) - a(n-3) + 3*a(n-4) + 4*a(n-5).
3

%I #11 Oct 11 2016 06:25:10

%S 1,4,13,51,204,819,3277,13108,52429,209715,838860,3355443,13421773,

%T 53687092,214748365,858993459,3435973836,13743895347,54975581389,

%U 219902325556,879609302221,3518437208883,14073748835532,56294995342131,225179981368525,900719925474100,3602879701896397,14411518807585587

%N a(n) = 3*a(n-1) + 4*a(n-2) - a(n-3) + 3*a(n-4) + 4*a(n-5).

%C Companion to A135343.

%H G. C. Greubel, <a href="/A135345/b135345.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,4,-1,3,4).

%F 4*a(n) - a(n+1) = hexaperiodic 0, 3, 1, 0, -3, -1.

%F a(n) = (4^(n+1)/5)-(2/15)*(-1)^n+(1/3)*cos(Pi*n/3)+(sqrt(3)/3)*cos(Pi*n/3). - _Richard Choulet_, Jan 04 2008

%F G.f.: ( -2*(3 + sqrt(3)) + (3 + 7*sqrt(3))*x + (9 + 5*sqrt(3))*x^2 -

%F 4*(3 + sqrt(3))*x^3)/( 6*(-1 + 4*x - x^3 + 4*x^4) ). - _G. C. Greubel_, Oct 10 2016

%F G.f.: (1-3*x^2) / ((1+x)*(1-4*x)*(1-x+x^2)). - _Colin Barker_, Oct 11 2016

%t LinearRecurrence[{3,4,-1,3,4},{1,4,13,51,204}, 25] (* _G. C. Greubel_, Oct 10 2016 *)

%o (PARI) Vec((1-3*x^2)/((1+x)*(1-4*x)*(1-x+x^2)) + O(x^30)) \\ _Colin Barker_, Oct 11 2016

%Y Cf. A135343.

%K nonn,easy

%O 0,2

%A _Paul Curtz_, Dec 06 2007

%E Removed incorrect formula, _Joerg Arndt_, Oct 11 2016