login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Difference between partial sum of the first n primes and the first n even numbers greater than 0.
1

%I #14 Aug 20 2017 16:58:52

%S 0,-1,-2,-3,-2,-1,2,5,10,19,28,41,56,71,88,109,134,159,188,219,250,

%T 285,322,363,410,459,508,559,610,663,728,795,866,937,1016,1095,1178,

%U 1265,1354,1447,1544,1641,1746,1851,1958,2065,2182,2309,2438,2567,2698,2833,2968,3111,3258,3409,3564,3719,3878,4039,4200

%N Difference between partial sum of the first n primes and the first n even numbers greater than 0.

%H G. C. Greubel, <a href="/A135267/b135267.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A007504(n) - A002378(n). - _R. J. Mathar_, Sep 10 2016

%t Table[Sum[Prime[k], {k, 1, n}] - n*(n + 1), {n, 1, 50}] (* _G. C. Greubel_, Oct 08 2016 *)

%t With[{nn=70},#[[1]]-#[[2]]&/@Thread[{Accumulate[Prime[Range[ nn]]], Accumulate[ Range[2,2nn,2]]}]] (* _Harvey P. Dale_, Aug 20 2017 *)

%o (PARI) g(n) = for(x=1,n,y=sum(j=1,x,2*j);z=sum(j=1,x,prime(j));print1(z-y","))

%o (PARI) a(n)=my(s,k); forprime(p=2,, if(k++>n, break); s+=p); s-n*(n+1) \\ _Charles R Greathouse IV_, Oct 08 2016

%Y Cf. A002378, A007504.

%K sign,easy

%O 1,3

%A _Cino Hilliard_, Dec 02 2007