Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Dec 30 2023 22:11:54
%S 1,3,5,7,11,17,27,41,65,99,157,239,379,577,915,1393,2209,3363,5333,
%T 8119,12875,19601,31083,47321,75041,114243,181165,275807,437371,
%U 665857,1055907,1607521,2549185,3880899,6154277,9369319,14857739,22619537,35869755,54608393,86597249,131836323,209064253,318281039,504725755,768398401,1218515763,1855077841,2941757281,4478554083
%N Shifted Pell recurrence: a(n) = 2*a(n-2) + a(n-4).
%C Mix A048655(n) and A001333(n+2).
%H G. C. Greubel, <a href="/A135246/b135246.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,0,1).
%F G.f.: (1 + 3*x + 3*x^2 + x^3)/(1 - 2*x^2 - x^4). - _G. C. Greubel_, Oct 04 2016
%F a(n) = 2*a(n-2) + a(n-4). - _Wesley Ivan Hurt_, Dec 30 2023
%t LinearRecurrence[{0, 2, 0, 1}, {1, 3, 5, 7}, 25] (* _G. C. Greubel_, Oct 04 2016 *)
%o (PARI) Vec((1 + 3*x + 3*x^2 + x^3)/(1 - 2*x^2 - x^4) + O(x^50)) \\ _Michel Marcus_, Oct 05 2016
%Y Cf. A001333, A048655, A109543.
%K nonn,easy
%O 0,2
%A _Paul Curtz_, Feb 15 2008