login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sums of triangle A135230.
2

%I #11 Sep 01 2023 04:10:59

%S 1,2,4,6,12,22,44,86,172,342,684,1366,2732,5462,10924,21846,43692,

%T 87382,174764,349526,699052,1398102,2796204,5592406,11184812,22369622,

%U 44739244,89478486,178956972,357913942,715827884,1431655766,2863311532,5726623062,11453246124,22906492246,45812984492

%N Row sums of triangle A135230.

%H G. C. Greubel, <a href="/A135231/b135231.txt">Table of n, a(n) for n = 0..500</a>

%F a(2*n+1) = A005578(n+1) if n is odd.

%F Conjectures from _Chai Wah Wu_, Aug 31 2023: (Start)

%F a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n > 3.

%F G.f.: (-2*x^3 - x^2 + 1)/((x - 1)*(x + 1)*(2*x - 1)). (End)

%e a(3) = 6 = sum of row 4 terms of triangle A135230; (1 + 2 + 2 + 1).

%e a(5) = 22 = A005578(6).

%e a(6) = 44 = A005578(7) + 1.

%p T:= proc(n, k) option remember;

%p if k=n then 1

%p elif k=0 then (3+(-1)^n)/2

%p else add(binomial(n-2*j-1, k-1), j=0..floor((n-1)/2))

%p fi; end:

%p seq( add(T(n, j), j=0..n), n=0..40); # _G. C. Greubel_, Nov 20 2019

%t T[n_, k_]:= T[n, k]= If[k==n, 1, If[k==0, (3+(-1)^n)/2, Sum[Binomial[n-1 - 2*j, k-1], {j, 0, Floor[(n-1)/2]}]]]; Table[Sum[T[n, j], {j, 0, n}], {n, 0, 40}] (* _G. C. Greubel_, Nov 20 2019 *)

%o (PARI) T(n,k) = if(k==n, 1, if(k==0, (3+(-1)^n)/2, sum(j=0, (n-1)\2, binomial( n-2*j-1, k-1)) )); \\ _G. C. Greubel_, Nov 20 2019

%o (Magma)

%o function T(n,k)

%o if k eq n then return 1;

%o elif k eq 0 then return (3+(-1)^n)/2;

%o else return (&+[Binomial(n-2*j-1, k-1): j in [0..Floor((n-1)/2)]]);

%o end if; return T; end function;

%o [(&+[T(n,j): j in [0..n]]): n in [0..40]]; // _G. C. Greubel_, Nov 20 2019

%o (Sage)

%o @CachedFunction

%o def T(n, k):

%o if (k==n): return 1

%o elif (k==0): return (3+(-1)^n)/2

%o else: return sum(binomial(n-2*j-1, k-1) for j in (0..floor((n-1)/2)))

%o [sum(T(n, j) for j in (0..n)) for n in (0..40)] # _G. C. Greubel_, Nov 20 2019

%Y Cf. A005578, A135230.

%K nonn

%O 0,2

%A _Gary W. Adamson_, Nov 23 2007

%E Terms a(16) onward added and offset changed by _G. C. Greubel_, Nov 20 2019