Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Aug 24 2012 10:50:00
%S 6,330,360,1230,1440,2250,2490,2970,3150,3300,3600,4410,5010,5310,
%T 6930,8460,10020,12300,12840,12852,13050,14400,14700,15420,15840,
%U 16500,17220,18480,20010,21840,22500,23310,24840,24900,27702,28050,29610,29700,31500
%N Numbers n that raised to the powers from 1 to k (with k>=1) are multiple of the sum of their digits (n raised to k+1 must not be a multiple). Case k=10.
%F Positive integers n such that A195860(n)=11.
%e 6^1=6 is a multiple of Sum_digits(6)=6
%e 6^2=36 is a multiple of Sum_digits(36)=9
%e 6^3=216 is a multiple of Sum_digits(216)=9
%e 6^4=1296 is a multiple of Sum_digits(1296)=18
%e 6^5=7776 is a multiple of Sum_digits(7776)=27
%e 6^6=46656 is a multiple of Sum_digits(46656)=27
%e 6^7=279936 is a multiple of Sum_digits(279936)=36
%e 6^8=1679616 is a multiple of Sum_digits(1679616)=36
%e 6^9=10077696 is a multiple of Sum_digits(10077696)=36
%e 6^10=60466176 is a multiple of Sum_digits(60466176)=36
%e 6^11=362797056 is not a multiple of Sum_digits(362797056)=45
%p readlib(log10); P:=proc(n,m) local a,i,k,w,x,ok; for i from 1 by 1 to n do a:=simplify(log10(i)); if not (trunc(a)=a) then ok:=1; x:=1; while ok=1 do w:=0; k:=i^x; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; if trunc(i^x/w)=i^x/w then x:=x+1; else if x-1=m then print(i); fi; ok:=0; fi; od; fi; od; end: P(15000,10);
%Y Cf. A135186, A135187, A135188, A135189, A135190, A135191, A135192, A135193, A135194, A135196, A135197, A135198, A135199, A135200, A135201, A135202.
%K nonn,base
%O 1,1
%A _Paolo P. Lava_ and _Giorgio Balzarotti_, Nov 23 2007
%E Example corrected by _Paolo P. Lava_, Oct 23 2009
%E More terms from _Max Alekseyev_, Sep 24 2011