Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Sep 08 2022 08:45:32
%S 2,7,37,253,1873,13957,102817,747733,5380993,38420677,272769697,
%T 1928677813,13597682113,95669909797,672124356577,4717058313493,
%U 33080385791233,231867703805317,1624599288327457,11379822861830773,79696902353804353,558069037387531237,3907436894177226337
%N a(n) = 7^n - 5^n + 3^n + 2^n.
%C Constants are the prime numbers in decreasing order.
%H Vincenzo Librandi, <a href="/A135164/b135164.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (17,-101,247,-210).
%F a(n) = 7^n - 5^n + 3^n + 2^n.
%F From _Vincenzo Librandi_, May 22 2014: (Start)
%F G.f.: 1/(1-7*x) - 1/(1-5*x) + 1/(1-3*x) + 1/(1-2*x).
%F a(n) = 17*a(n-1) - 101*a(n-2) + 247*a(n-3) - 210*a(n-4) for n>3. (End)
%F E.g.f.: exp(7*x) - exp(5*x) + exp(3*x) + exp(2*x). - _G. C. Greubel_, Sep 30 2016
%e a(4) = 1873 because 7^4 = 2401, 5^4 = 625, 3^4 = 81, 2^4 = 16 and 2401-625+81+16 = 1873.
%t CoefficientList[Series[1/(1 - 7 x) - 1/(1 - 5 x) + 1/(1 - 3 x) + 1/(1 - 2 x), {x, 0, 40}], x] (* _Vincenzo Librandi_, May 22 2014 *)
%t Table[7^n-5^n+3^n+2^n,{n,0,30}] (* or *) LinearRecurrence[{17,-101,247,-210},{2,7,37,253},30] (* _Harvey P. Dale_, Jul 23 2016 *)
%o (Magma) [7^n-5^n+3^n+2^n: n in [0..50]]; // _Vincenzo Librandi_, Dec 14 2010
%o (Magma) I:=[2,7,37,253]; [n le 4 select I[n] else 17*Self(n-1)-101*Self(n-2)+247*Self(n-3)-210*Self(n-4): n in [1..30]]; // _Vincenzo Librandi_, May 22 2014
%o (PARI) a(n)=7^n-5^n+3^n+2^n \\ _Charles R Greathouse IV_, Sep 30 2016
%Y Cf. A000079, A000244, A000351, A000420, A001047, A074527, A007689, A135158, A135159, A135160.
%K nonn,easy
%O 0,1
%A _Omar E. Pol_, Nov 21 2007
%E More terms from _Vincenzo Librandi_, Dec 14 2010