login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k) = 2*A134058(n, k) - 1, read by rows.
2

%I #13 Apr 25 2024 09:15:37

%S 1,3,3,3,7,3,3,11,11,3,3,15,23,15,3,3,19,39,39,19,3,3,23,59,79,59,23,

%T 3,3,27,83,139,139,83,27,3,3,31,111,223,279,223,111,31,3,3,35,143,335,

%U 503,503,335,143,35,3

%N Triangle T(n, k) = 2*A134058(n, k) - 1, read by rows.

%H G. C. Greubel, <a href="/A135087/b135087.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n, k) = 2*A134058(n, k) - 1.

%F From _G. C. Greubel_, May 03 2021: (Start)

%F T(n, k) = 4*binomial(n, k) - 2*[n=0] - 1.

%F Sum_{k=0..n} T(n, k) = 2^(n+2) - (n + 1 + 2*[n=0]) = A095768(n) - 2*[n=0]. (End)

%e First few rows of the triangle are:

%e 1;

%e 3, 3;

%e 3, 7, 3;

%e 3, 11, 11, 3;

%e 3, 15, 23, 15, 3;

%e 3, 19, 39, 39, 19, 3;

%e 3, 23, 59, 79, 59, 23, 3;

%e ...

%t Table[4*Binomial[n, k] -2*Boole[n==0] -1, {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, May 03 2021 *)

%o (Magma) [1] cat [4*Binomial(n,k) -1: k in [0..n], n in [1..12]]; // _G. C. Greubel_, May 03 2021

%o (Sage)

%o def A135087(n,k): return 4*binomial(n,k) -2*bool(n==0) -1

%o flatten([[A135087(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 03 2021

%Y Cf. A095768, A134058.

%K nonn,tabl

%O 0,2

%A _Gary W. Adamson_, Nov 18 2007