Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Mar 30 2012 18:37:07
%S 1,1,1,2,2,1,8,7,3,1,50,40,15,4,1,436,326,112,26,5,1,4912,3492,1128,
%T 240,40,6,1,68098,46558,14373,2881,440,57,7,1,1122952,744320,221952,
%U 42604,6135,728,77,8,1,21488640,13889080,4029915,748548,103326,11565,1120,100
%N Triangle, read by rows, that transforms diagonals in the table of coefficients in the successive iterations of x+x^2 (cf. A122888).
%H Paul D. Hanna, <a href="/A135080/b135080.txt">Table of n, a(n) for n=0..495 (rows 0..30)</a>
%F Columns may be generated by a method illustrated by triangles A187005, A187115, and A187120. The main diagonal of triangles A187005, A187115, and A187120, equals columns 0, 1, and 2, respectively.
%e Triangle begins:
%e 1;
%e 1, 1;
%e 2, 2, 1;
%e 8, 7, 3, 1;
%e 50, 40, 15, 4, 1;
%e 436, 326, 112, 26, 5, 1;
%e 4912, 3492, 1128, 240, 40, 6, 1;
%e 68098, 46558, 14373, 2881, 440, 57, 7, 1;
%e 1122952, 744320, 221952, 42604, 6135, 728, 77, 8, 1;
%e 21488640, 13889080, 4029915, 748548, 103326, 11565, 1120, 100, 9, 1; ...
%e Coefficients in iterations of (x+x^2) form table A122888:
%e 1;
%e 1, 1;
%e 1, 2, 2, 1;
%e 1, 3, 6, 9, 10, 8, 4, 1;
%e 1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1;
%e 1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750,...;
%e 1, 6, 30, 135, 560, 2170, 7916, 27326, 89582, 279622, 832680,...; ...
%e This triangle T transforms one diagonal in the above table into another;
%e start with the main diagonal of A122888, A112319, which begins:
%e [1, 1, 2, 9, 64, 630, 7916, 121023, 2179556, 45179508, ...];
%e then the transform T*A112319 equals A112317, which begins:
%e [1, 2, 6, 30, 220, 2170, 27076, 409836, 7303164, 149837028, ...];
%e and the transform T*A112317 equals A112320, which begins:
%e [1, 3, 12, 70, 560, 5810, 74760, 1153740, 20817588, 430604724, ...].
%o (PARI) {T(n,k)=local(F=x,M,N,P,m=max(n,k)); M=matrix(m+2,m+2,r,c,F=x;for(i=1,r+c-2,F=subst(F,x,x+x^2+x*O(x^(m+2))));polcoeff(F,c)); N=matrix(m+1,m+1,r,c,M[r,c]);P=matrix(m+1,m+1,r,c,M[r+1,c]);(P~*N~^-1)[n+1,k+1]}
%o (PARI) /* Generate by method given in A187005, A187115, A187120 (faster): */
%o {T(n,k)=local(Ck=x);for(m=1,n-k+1,Ck=(1/x^k)*subst(truncate(x^k*Ck),x,x+x^2 +x*O(x^m)));polcoeff(Ck,n-k+1,x)}
%Y Cf. columns: A135081, A135082, A135083.
%Y Cf. related tables: A122888, A166900, A187005, A187115, A187120.
%Y Cf. related sequences: A112319, A112317, A112320, A187009.
%K nonn,tabl
%O 0,4
%A _Paul D. Hanna_, Nov 18 2007
%E Added cross-reference; example corrected and name changed by _Paul D. Hanna_, Feb 04 2011