login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Pentanacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) if n>=5, and a(n) = n otherwise.
3

%I #21 Aug 25 2020 09:48:32

%S 0,1,2,3,4,10,20,39,76,149,294,578,1136,2233,4390,8631,16968,33358,

%T 65580,128927,253464,498297,979626,1925894,3786208,7443489,14633514,

%U 28768731,56557836,111189778,218593348,429743207,844852900

%N Pentanacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) if n>=5, and a(n) = n otherwise.

%H G. C. Greubel, <a href="/A135056/b135056.txt">Table of n, a(n) for n = 0..1000</a>

%H Piezas, Tito III and Weisstein, Eric W., <a href="http://mathworld.wolfram.com/PentanacciNumber.html">Pentanacci Number</a>.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,1,1,1).

%F G.f.: x*(x-1)*(2*x^2+2*x+1)/(-1+x^5+x^4+x^3+x^2+x). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009

%t a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3] + a[n - 4] + a[n - 5]; a[0] = 0; a[1] = 1; a[2] = 2; a[3] = 3; a[4] = 4; Table[a[n], {n, 0, 50}] (* _Artur Jasinski_, Nov 18 2007 *)

%t LinearRecurrence[{1,1,1,1,1},Range[0,4],40] (* _Harvey P. Dale_, Oct 18 2013 *)

%Y Cf. A001591, A135055.

%K nonn

%O 0,3

%A _Artur Jasinski_, Nov 15 2007, Nov 18 2007