Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Sep 26 2016 21:29:31
%S 1,1,-1,-1,-4,1,-22,-7,10,-1,-171,148,58,-20,1,97,3238,-488,-237,35,
%T -1,45813,30013,-28334,631,716,-56,1,1235816,-772641,-587173,160710,
%U 2477,-1800,84,-1,5960643,-54291825,3463307,5842062,-673694,-20181,3983,-120,1
%N Triangle read by rows: row n gives coefficients of increasing powers of x in the polynomial (-1)^n*p(n), where p(n) is defined as follows. Let f(n) = n*(n+1)/2, g(n) = f(n)+1; then p(-1) = 0, p(0) = 1 and for n >= 1, p(n) = (x - f(n))*p(n - 1) - g(n - 1)^2*p(n - 2).
%C Inspired by the Cornelius-Schultz article.
%D Anthony Ralston and Philip Rabinowitz, A First Course in Numerical Analysis, 1978, ISBN 0070511586, see p. 256.
%H G. C. Greubel, <a href="/A135049/b135049.txt">Table of n, a(n) for the first 50 rows</a>
%H E. F. Cornelius Jr. and P. Schultz, <a href="http://www.jstor.org/stable/27642423">Sequences generated by polynomials</a>, Amer. Math. Monthly, No. 2, 2008.
%e {1},
%e {1, -1},
%e {-1, -4, 1},
%e {-22, -7, 10, -1},
%e {-171, 148, 58, -20,1},
%e {97, 3238, -488, -237, 35, -1},
%e {45813, 30013, -28334, 631, 716, -56, 1},
%e {1235816, -772641, -587173, 160710, 2477, -1800, 84, -1}.
%t a[n_] := n*(n + 1)/2; b[n_] = a[n] + 1;
%t T[n_, m_, d_] := If[ n == m, a[n], If[n == m - 1 || n == m + 1, If[n == m - 1, b[m - 1], If[ n == m + 1, b[n - 1], 0]], 0]]; M0[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}]; TableForm[Table[M0[n], {n, 1, 4}]];
%t p1 = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[M0[n + 1], x], x], {n, 0, 10}]]; (* sequence values *)
%t Flatten[p1] p[x, 0] = 1; p[x, -1] = 0; p[x_, j_] := p[x, j] = (x - a[j])*p[x, j - 1] - b[j - 1]^2*p[x, j - 2]; p2 = Join[{{1}}, Table[CoefficientList[(-1)^n*p[x, n], x], {n, 1, 11}]]; p1 - p2
%K tabl,sign
%O 1,5
%A _Roger L. Bagula_, Feb 11 2008
%E Edited by _N. J. A. Sloane_, Mar 02 2008