The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135040 Decimal expansion of the unique root of equation N(-x) = N'(x), where N(x) is a cumulative standard normal distribution function, N'(x) = 1/sqrt( 2*Pi )*exp( -(x^2)/2 ). 1
 3, 0, 2, 6, 3, 0, 8, 4, 0, 7, 1, 1, 5, 7, 2, 7, 4, 0, 8, 5, 2, 8, 4, 5, 6, 6, 3, 1, 8, 4, 2, 6, 8, 5, 1, 5, 3, 1, 3, 5, 5, 7, 8, 4, 3, 0, 7, 2, 2, 7, 5, 4, 5, 1, 5, 8, 4, 9, 2, 2, 3, 6, 3, 5, 4, 9, 2, 2, 2, 2, 5, 8, 5, 9, 6, 0, 0, 4, 6, 1, 6, 3, 6, 9, 6, 0, 7, 7, 1, 0, 0, 3, 5, 4, 6, 4, 5, 0, 2, 3, 4, 2, 9, 6, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Standard Normal Distribution Eric Weisstein's World of Mathematics, Normal Distribution Function Eric Weisstein's World of Mathematics, Normal Distribution EXAMPLE c = 0.302630840711572740852845663184268515313557843072275451584922363.... MATHEMATICA FindRoot[ Exp[ -(x^2)/2 ] == Integrate[ Exp[ -(t^2)/2 ], {t, -Infinity, -x} ], {x, 0}] RealDigits[x /. FindRoot[E^(-(x^2/2)) == Sqrt[Pi/2]*Erfc[x/Sqrt[2]], {x, 0}, WorkingPrecision -> 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *) CROSSREFS Sequence in context: A112156 A285723 A072328 * A048733 A309973 A298058 Adjacent sequences:  A135037 A135038 A135039 * A135041 A135042 A135043 KEYWORD cons,nonn AUTHOR Alexander Adamchuk, Feb 29 2008, Mar 10 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 1 09:27 EDT 2020. Contains 334759 sequences. (Running on oeis4.)