|
|
A134996
|
|
Dihedral calculator primes: p, p upside down, p in a mirror, p upside-down-and-in-a-mirror are all primes.
|
|
5
|
|
|
2, 5, 11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 120121, 121021, 121151, 150151, 151051, 151121, 180181, 180811, 181081, 188011, 188801, 1008001, 1022201, 1028011, 1055501, 1058011, 1082801, 1085801, 1088081
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The digits of a(n) are restricted to 0, 1, 2, 5, 8. - Ivan N. Ianakiev, Oct 08 2015
The first term containing all the possible digits is 108225151. There are 2958 such terms up to 10^12, the last one in this range being 188885250551. - Giovanni Resta, Oct 08 2015
|
|
LINKS
|
|
|
EXAMPLE
|
120121 is such a number because 120121, 121021 (upside down), 151051 (mirror) and 150151 are all prime. (This is the smallest one in which all four numbers are distinct.)
|
|
MATHEMATICA
|
lst1={2, 5};
startQ[n_]:=First[IntegerDigits[n]]==1;
subQ[n_]:=Module[{lst={0, 1, 2, 5, 8}}, SubsetQ[lst, Union[IntegerDigits[n]]]];
rev[n_]:=Reverse[IntegerDigits[n]];
updown[n_]:=FromDigits[rev[n]];
mirror[n_]:=FromDigits[rev[n]/.{2-> 5, 5-> 2}];
updownmirror[n_]:=FromDigits[rev[mirror[n]]];
lst2=Select[Range@188801, And[startQ[#], subQ[#], PrimeQ[#], PrimeQ[updown[#]], PrimeQ[mirror[#]], PrimeQ[updownmirror[#]]]&];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base,nice
|
|
AUTHOR
|
Mike Keith (domnei(AT)aol.com)
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|