Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 May 22 2018 20:35:29
%S 1,2,8,64,880,17984,495296,17255424,728771584,36208782336,
%T 2069977144320,133869415030784,9664049202221056,770400218809384960,
%U 67219977066339008512,6372035504466437079040,652103070162164448952320,71656927837957783339925504
%N Number of hyperforests with n labeled vertices: analog of A134954 when edges of size 1 are allowed (with no two equal edges).
%D D. E. Knuth: The Art of Computer Programming, Volume 4, Generating All Combinations and Partitions Fascicle 3, Section 7.2.1.4. Generating all partitions. Page 38, Algorithm H. - _Washington Bomfim_, Sep 25 2008
%H Alois P. Heinz, <a href="/A134956/b134956.txt">Table of n, a(n) for n = 0..335</a>
%F Equals 2^n*A134954(n).
%F a(n) = Sum of n!prod_{k=1}^n\{ frac{ A134958(k)^{c_k} }{ k!^{c_k} c_k! } } over all the partitions of n, c_1 + 2c_2 + ... + nc_n; c_1, c_2, ..., c_n >= 0. - _Washington Bomfim_, Sep 25 2008
%e From _Gus Wiseman_, May 21 2018: (Start)
%e The a(2) = 8 hyperforests are the following:
%e {{1},{2},{1,2}}
%e {{1},{1,2}}
%e {{2},{1,2}}
%e {{1,2}}
%e {{1},{2}}
%e {{1}}
%e {{2}}
%e {}
%e (End)
%p with(combinat): p:= proc(n) option remember; add(stirling2(n-1, i) *n^(i-1), i=0..n-1) end: g:= proc(n) option remember; p(n) +add(binomial(n-1, k-1) *p(k) *g(n-k), k=1..n-1) end: a:= n-> `if`(n=0, 1, 2^n * g(n)): seq(a(n), n=0..30); # _Alois P. Heinz_, Oct 07 2008
%t p[n_] := p[n] = Sum[ StirlingS2[n-1, i]*n^(i-1), {i, 0, n-1}]; g[n_] := g[n] = p[n] + Sum[Binomial[n-1, k-1]*p[k]*g[n-k], {k, 1, n-1}]; a[n_] := If[n == 0, 1, 2^n* g[n]]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Feb 13 2015, after _Alois P. Heinz_ *)
%Y Cf. A134958. - _Washington Bomfim_, Sep 25 2008
%Y Cf. A030019, A035053, A048143, A054921, A134954, A134955, A134957, A144959, A304716, A304717, A304867, A304911.
%K nonn
%O 0,2
%A _Don Knuth_, Jan 26 2008