login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (5*3^n-3)/2.
15

%I #53 Aug 28 2023 14:29:18

%S 1,6,21,66,201,606,1821,5466,16401,49206,147621,442866,1328601,

%T 3985806,11957421,35872266,107616801,322850406,968551221,2905653666,

%U 8716961001,26150883006,78452649021,235357947066,706073841201,2118221523606

%N a(n) = (5*3^n-3)/2.

%C Numbers n where the recurrence s(0)=1, if s(n-1) >= n then s(n) = s(n-1) - n else s(n) = s(n-1) + n produces s(n)=0. - _Hugo Pfoertner_, Jan 05 2012

%C A046901(a(n)) = 1. - _Reinhard Zumkeller_, Jan 31 2013

%C Binomial transform of A146523: (1, 5, 10, 20, 40, ...) and double binomial transform of A010685: (1, 4, 1, 4, 1, 4, ...). - _Gary W. Adamson_, Aug 25 2016

%C Also the number of maximal cliques in the (n+1)-Hanoi graph. - _Eric W. Weisstein_, Dec 01 2017

%C a(n) is the least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1, where f(n) = 1/(n+1). Because Sum_{k=1..5*3^(n-1)} 1/(a(n)+3*k-1) + 1/(a(n)+3*k) + 1/(a(n)+3*k+1) - 1/((a(n)+1+5*3^n)*5*3^(n-1)) < Sum_{k=1..5*3^(n-1)} 1/(a(n-1)+k+1) < Sum_{k=1..5*3^(n-1)} 1/(a(n)+3*k-1) + 1/(a(n)+3*k) + 1/(a(n)+3*k+1), we have 1 < 1/3 + 1/4 + ... + 1/7 < 1/8 + 1/9 + ... + 1/22 < ... . - _Jinyuan Wang_, Jun 15 2020

%H Vincenzo Librandi, <a href="/A134931/b134931.txt">Table of n, a(n) for n = 0..500</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HanoiGraph.html">Hanoi Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MaximalClique.html">Maximal Clique</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-3).

%F a(n) = 3*(a(n-1) + 1), with a(0)=1.

%F From _R. J. Mathar_, Jan 31 2008: (Start)

%F O.g.f.: (5/2)/(1-3*x) - (3/2)/(1-x).

%F a(n) = (A005030(n) - 3)/2. (End)

%F a(n) = A060816(n+1) - 1. - _Philippe Deléham_, Apr 14 2013

%F E.g.f.: exp(x)*(5*exp(2*x) - 3)/2. - _Stefano Spezia_, Aug 28 2023

%p seq((5*3^n-3)/2, n= 0..25); # _Gary Detlefs_, Jun 22 2010

%t a=1; lst={a}; Do[a=a*3+3; AppendTo[lst,a], {n,0,100}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Dec 25 2008 *)

%t Table[(5 3^n - 9)/6, {n, 20}] (* _Eric W. Weisstein_, Dec 01 2017 *)

%t (5 3^Range[20] - 9)/6 (* _Eric W. Weisstein_, Dec 01 2017 *)

%t LinearRecurrence[{4, -3}, {1, 6}, 20] (* _Eric W. Weisstein_, Dec 01 2017 *)

%t CoefficientList[Series[(1 + 2 x)/(1 - 4 x + 3 x^2), {x, 0, 20}], x] (* _Eric W. Weisstein_, Dec 01 2017 *)

%o (Magma) [(5*3^n-3)/2: n in [0..30]]; // _Vincenzo Librandi_, Jun 05 2011

%o (PARI) a(n) = (5*3^n-3)/2; /* _Joerg Arndt_, Apr 14 2013 */

%Y Cf. A003462, A007051, A034472, A024023, A067771, A029858.

%Y Cf. A005030, A010685, A046901, A060816, A116952, A146523, A225918.

%K nonn,easy

%O 0,2

%A _Rolf Pleisch_, Jan 29 2008

%E More terms from _Vladimir Joseph Stephan Orlovsky_, Dec 25 2008