Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 May 14 2023 02:33:49
%S 2,3,18,27,200,2870,39492,22980943,120106923,2602986018837012
%N Number of primes between A075737(n) and A075737(n+1), including one bound.
%H Kim Walisch, <a href="https://github.com/kimwalisch/primecount">Fast C++ prime counting function implementation (primecount)</a>.
%t a = {}; k = {}; Do[If[PrimeQ[Fibonacci[Prime[n]]], AppendTo[k, Fibonacci[Prime[n]]]], {n, 1, 100}];Do[AppendTo[a, PrimePi[k[[n + 1]]] - PrimePi[k[[n]]]], {n, 1, 9}]; a
%Y Cf. A000045, A050937, A075737, A090819, A134787, A307499.
%K nonn,more
%O 1,1
%A _Artur Jasinski_, Nov 13 2007
%E Edited by _N. J. A. Sloane_, Oct 07 2008
%E a(10) using Kim Walisch's primecount, from _Amiram Eldar_, May 14 2023