OFFSET
1,3
COMMENTS
The asymptotic density of this sequence within the Motzkin numbers is 2/3. - Amiram Eldar, Aug 26 2024
LINKS
Robert Israel, Table of n, a(n) for n = 1..801
FORMULA
MAPLE
S:= series(exp(x)*BesselI(1, 2*x)/x, x, 500):
select(type, [seq(simplify(coeff(S, x, j)*j!), j=0..498)], odd); # Robert Israel, Nov 03 2015
MATHEMATICA
Select[Table[(-1)^n Hypergeometric2F1[3/2, -n, 3, 4], {n, 0, 40}], OddQ] (* Vladimir Reshetnikov, Nov 02 2015 *)
PROG
(PARI) a001006(n) = polcoeff((1-x-sqrt((1-x)^2-4*x^2+x^3*O(x^n)))/ (2*x^2), n); for(n=0, 100, if((m=a001006(n))%2==1, print1(m", "))) \\ Altug Alkan, Nov 03 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Nov 11 2007
STATUS
approved