Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Dec 12 2023 08:42:18
%S 0,1,0,0,0,-1,0,1,0,0,0,-1,0,1,0,0,0,-1,0,1,0,0,0,-1,0,1,0,0,0,-1,0,1,
%T 0,0,0,-1,0,1,0,0,0,-1,0,1,0,0,0,-1,0,1,0,0,0,-1,0,1,0,0,0,-1,0,1,0,0,
%U 0,-1,0,1,0,0,0,-1,0,1,0,0,0,-1,0,1,0,0,0,-1,0,1,0,0,0,-1,0,1,0,0,0,-1,0,1,0,0,0,-1,0,1,0
%N Period 6: repeat [0, 1, 0, 0, 0, -1].
%C Dirichlet series for the non-principal character modulo 6: L(s,chi) = Sum_{n>=1} a(n)/n^s. For example L(1,chi) = A093766, L(2,chi) = A214552, and L(3,chi) = Pi^3/(18*sqrt(3)). See Jolley eq. (314) and arXiv:1008.2547 L(m=6,r=2,s). - _R. J. Mathar_, Jul 31 2010
%D T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, page 139, k=6, Chi_2(n).
%D L. B. W. Jolley, Summation of Series, Dover (1961).
%H R. J. Mathar, <a href="http://arxiv.org/abs/1008.2547">Table of Dirichlet L-series..</a>, arXiv:1008.2547 [math.NT], 2010-2015.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,-1,0,-1).
%F Euler transform of length 6 sequence [0, 0, 0, -1, 0, 1]. - _Michael Somos_, Feb 10 2008
%F G.f.: x * (1 - x^4) / (1 - x^6) = x*(1+x^2) / (1 + x^2 + x^4) = x*(1+x^2) / ( (1+x+x^2)*(x^2-x+1) ).
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3)) where f(u, v, w) = w * (2 + v - u^2 - 2*v^2) - 2 * u * v. - _Michael Somos_, Aug 11 2009
%F a(n) is multiplicative with a(p^e) = 0^e if p = 2 or p = 3, a(p^e) = 1 if p == 1 (mod 6), a(p^e) = (-1)^e if p == 5 (mod 6). - _Michael Somos_, Aug 11 2009
%F a(-n) = -a(n). a(n+6) = a(n). a(2*n) = a(3*n) = 0.
%F sqrt(3)*a(n) = sin(Pi*n/3) + sin(2*Pi*n/3). - _R. J. Mathar_, Oct 08 2011
%F a(n) + a(n-2) + a(n-4) = 0 for n>3. - _Wesley Ivan Hurt_, Jun 20 2016
%F E.g.f.: 2*sin(sqrt(3)*x/2)*cosh(x/2)/sqrt(3). - _Ilya Gutkovskiy_, Jun 21 2016
%e G.f. = x - x^5 + x^7 - x^11 + x^13 - x^17 + x^19 - x^23 + x^25 - x^29 + ...
%p A134667:=n->[0, 1, 0, 0, 0, -1][(n mod 6)+1]: seq(A134667(n), n=0..100);
%p # _Wesley Ivan Hurt_, Jun 20 2016
%t a[ n_] := JacobiSymbol[-12, n]; (* _Michael Somos_, Apr 24 2014 *)
%t a[ n_] := {1, 0, 0, 0, -1, 0}[[Mod[n, 6, 1]]]; (* _Michael Somos_, Apr 24 2014 *)
%t PadRight[{},120,{0,1,0,0,0,-1}] (* _Harvey P. Dale_, Aug 01 2021 *)
%o (PARI) {a(n) = [0, 1, 0, 0, 0, -1][n%6+1]}; /* _Michael Somos_, Feb 10 2008 */
%o (PARI) {a(n) = kronecker(-12, n)}; /* _Michael Somos_, Feb 10 2008 */
%o (PARI) {a(n) = if( n < 0, -a(-n), if( n<1, 0, direuler(p=2, n, 1 / (1 - kronecker(-12, p) * X))[n]))}; /* _Michael Somos_, Aug 11 2009 */
%o (Magma) &cat[[0, 1, 0, 0, 0, -1]^^20]; // _Wesley Ivan Hurt_, Jun 20 2016
%Y Cf. A093766, A120325, A131719, A131720, A131735, A131736, A214552.
%K sign,easy,mult
%O 0,1
%A _Paul Curtz_, Jan 26 2008