login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n X n (0,1,2)-matrices with every row sum 3 and column sum 3.
3

%I #16 Oct 21 2023 05:36:35

%S 0,2,31,1344,111920,16214000,3758757240,1310799454720,655551508577280,

%T 452647176631372800,418399785559398720000,504669505260741099417600,

%U 777461035821119354357452800,1501959201213688265322501427200

%N Number of n X n (0,1,2)-matrices with every row sum 3 and column sum 3.

%D Zhonghua Tan, Shanzhen Gao, Kenneth Mathies, Joshua Fallon, Counting (0,1,2)-Matrices, Congressus Numeratium, December 2008.

%H R. H. Hardin, <a href="/A134646/b134646.txt">Table of n, a(n) for n=1..99</a>

%F a(n) = Sum_{alpha = 0 .. n} Sum_{beta = 0 .. n-alpha } (-4)^(n - alpha - beta) * 3^beta * n!^2 * (beta + 3*alpha)! / (alpha!^2 * beta! * (n - alpha - beta)! * 6^(n + alpha)).

%F a(n) ~ sqrt(Pi) * 3^(n + 1/2) * n^(3*n + 1/2) / (2^(2*n - 1/2) * exp(3*n-2)). - _Vaclav Kotesovec_, Oct 21 2023

%e a(2) = 2:

%e 21 12

%e 12 21

%t Table[Sum[Sum[(-4)^(n - alpha - beta) * 3^beta * n!^2 * (beta + 3*alpha)! / (alpha!^2 * beta! * (n - alpha - beta)! * 6^(n + alpha)), {beta, 0, n - alpha}], {alpha, 0, n}], {n, 1, 20}] (* _Vaclav Kotesovec_, Oct 21 2023 *)

%Y Cf. A000681, A134645.

%K nonn,easy

%O 1,2

%A _Shanzhen Gao_, Nov 05 2007

%E Definition corrected and a(7) and a(8) found (by direct enumeration) by R. H. Hardin, Oct 18 2009

%E a(9) - a(99) from _R. H. Hardin_ Feb 06 2010