login
Composite numbers such that the square root of the sum of squares of their prime factors is a prime.
1

%I #13 Jul 10 2013 20:40:28

%S 48,320,486,3072,3150,6174,7128,7650,10890,11466,15000,18018,18810,

%T 25578,27846,29400,30240,39546,40590,45056,45927,53010,54600,55062,

%U 59202,73440,75582,77418,80910,85800,90552,92106,95238,96642,98838

%N Composite numbers such that the square root of the sum of squares of their prime factors is a prime.

%C Numbers included in A134605, but not in A134606. a(1)=48 is the minimal number with this property.

%H Hieronymus Fischer, <a href="/A134607/b134607.txt">Table of n, a(n) for n = 1..1000</a>

%e a(2)=320, since 320=2*2*2*2*2*2*5 and sqrt(6*2^2+5^2)=sqrt(49)=7.

%t sspfpQ[n_]:=PrimeQ[Sqrt[Total[Flatten[Table[#[[1]],{#[[2]]}]&/@ FactorInteger[ n]]^2]]]; upto=100000;With[{comps=Complement[ Range[ upto],Prime[ Range[PrimePi[upto]]]]},Select[comps,sspfpQ]] (* _Harvey P. Dale_, Jul 10 2013 *)

%Y Cf. A001597, A025475, A134333, A134344, A134376.

%Y Cf. A134600, A134602, A134605, A134611, A134616, A134618, A134620.

%K nonn

%O 1,1

%A _Hieronymus Fischer_, Nov 11 2007

%E Minor edits by _Hieronymus Fischer_, Apr 19 2013