Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Oct 14 2022 12:01:56
%S 1,3,4,5,6,7,7,8,9,10,9,10,11,12,13,11,12,13,14,15,16,13,14,15,16,17,
%T 18,19,15,16,17,18,19,20,21,22,17,18,19,20,21,22,23,24,25,19,20,21,22,
%U 23,24,25,26,27,28
%N Triangle read by rows: T(n,k) = 2n + k - 2; 1 <= k <= n.
%C Row sums are the heptagonal numbers, A000566: (1, 7, 18, 34, 55, 81, ...).
%C Row n consists of n consecutive integers starting with 2n-1. - _Emeric Deutsch_, Nov 04 2007
%H Boris Putievskiy, <a href="/A134483/b134483.txt">Rows n = 1..140 of triangle, flattened</a>
%H Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012.
%F From _Emeric Deutsch_, Nov 04 2007: (Start)
%F T(n,k) = 2n + k - 2 for 1 <= k <= n.
%F G.f. = t*z(1 + z + 2*t*z - 4*t*z^2)/((1-z)^2*(1-t*z)^2). (End)
%F From _Boris Putievskiy_, Jan 16 2013: (Start)
%F a(n) = A002260(n) + 2*A003056(n);
%F a(n) = j+2*t, where j = n - t*(t+1)/2, t = floor((-1+sqrt(8*n-7))/2). (End)
%e First few rows of the triangle:
%e 1;
%e 3, 4;
%e 5, 6, 7;
%e 7, 8, 9, 10;
%e 9, 10, 11, 12, 13;
%e ...
%p for n to 10 do seq(2*n+k-2,k=1..n) end do; # yields sequence in triangular form - _Emeric Deutsch_, Nov 04 2007
%t Table[2n+k-2,{n,10},{k,n}]//Flatten (* _Harvey P. Dale_, Oct 14 2022 *)
%Y Cf. A000566.
%Y Cf. A002260, A003056.
%K nonn,tabl
%O 1,2
%A _Gary W. Adamson_, Oct 27 2007