login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0)=1; for n > 0, a(n) = a(n-1) + prime(n) if a(n-1) is odd, else a(n) = a(n-1)/2.
1

%I #17 Mar 11 2022 12:38:07

%S 1,3,6,3,10,5,18,9,28,14,7,38,19,60,30,15,68,34,17,84,42,21,100,50,25,

%T 122,61,164,82,41,154,77,208,104,52,26,13,170,85,252,126,63,244,122,

%U 61,258,129,340,170,85,314,157,396,198,99,356,178,89,360,180,90,45

%N a(0)=1; for n > 0, a(n) = a(n-1) + prime(n) if a(n-1) is odd, else a(n) = a(n-1)/2.

%C LFSR with primes.

%C Is it true that Lim a(n)/prime(n) < square root(3)?

%D T. Herlestam, On functions of linear shift register sequences. Springer Lecture notes in computer sciences, ISBN 978-3-540-16468-5.

%H Harvey P. Dale, <a href="/A134440/b134440.txt">Table of n, a(n) for n = 0..1000</a>

%H Georg Schmidt and Vladimir R. Sidorenko, <a href="https://arxiv.org/abs/cs/0605044">Linear Shift-Register Synthesis for Multiple Sequences of Varying Length</a>, arXiv:cs/0605044 [cs.IT], 2001.

%H Boaz Tsaban and Uzi Vishne, <a href="https://arxiv.org/abs/cs/0304010">Efficient linear feedback shift registers with maximal period</a>, arXiv:cs/0304010 [cs.CR], 2003.

%p A134440 := proc(n)

%p option remember;

%p if n =0 then

%p 1;

%p elif type(procname(n-1),'odd') then

%p procname(n-1)+ithprime(n) ;

%p else

%p procname(n-1)/2 ;

%p end if;

%p end proc: # _R. J. Mathar_, Jun 20 2021

%t nxt[{n_,a_}]:={n+1,If[OddQ[a],a+Prime[n+1],a/2]}; Transpose[ NestList[ nxt,{0,1},70]][[2]] (* _Harvey P. Dale_, Jan 12 2016 *)

%Y Cf. A000040, A135287.

%K nonn

%O 0,2

%A _Ctibor O. Zizka_, Jan 18 2008

%E Offset corrected by _R. J. Mathar_, Jun 20 2021