login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134424
Area under all paths in the first quadrant from (0,0) to (n,0) using steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0).
1
0, 0, 1, 4, 21, 80, 316, 1152, 4186, 14812, 52020, 180616, 623338, 2138040, 7302035, 24842736, 84262609, 285052676, 962184359, 3241616628, 10903119167, 36619715860, 122837641530, 411588875136, 1377735161776, 4607695277512
OFFSET
0,4
FORMULA
a(n) = Sum_{k>=0} k * A134423(n,k).
G.f.: z^2*(1+z^2)*g^2/((1+z-z^2)*(1-3*z-z^2)), where g=1+z*g+z^2*g+z^2*g^2 (g is the g.f. of A128720).
Conjecture D-finite with recurrence -(n+2)*(5*n-7)*a(n) -(n+1)*(5*n-127)*a(n-1) +(135*n^2-655*n-42)*a(n-2) +2*(5*n^2-275*n-108)*a(n-3) +(-725*n^2+4941*n-5734)*a(n-4) +(-235*n^2+1880*n-1173)*a(n-5) +(725*n^2-6659*n+12606)*a(n-6) +2*(5*n^2+195*n-1988)*a(n-7) +(-135*n^2+1505*n-3358)*a(n-8) -(5*n+87)*(n-9)*a(n-9) +(5*n-33)*(n-10)*a(n-10)=0. - R. J. Mathar, Jul 24 2022
EXAMPLE
a(3)=4 because the areas under the paths hhh, hH, Hh, hUD, UhD and UDh are 0,0,0,1,2 and 1, respectively.
MAPLE
g:=((1-z-z^2-sqrt((1+z-z^2)*(1-3*z-z^2)))*1/2)/z^2: G:=z^2*(1+z^2)*g^2/((1+z-z^2)*(1-3*z-z^2)): Gser:=series(G, z=0, 32): seq(coeff(Gser, z, n), n=0..25);
CROSSREFS
Sequence in context: A354172 A280434 A163697 * A348621 A277794 A292126
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 25 2007
STATUS
approved