login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134241 a(n) = 8*(n-1)*(n-2)*(n-3)*(6*n^2-37*n+60). 1
0, 0, 0, 384, 4800, 25920, 91200, 248640, 572544, 1169280, 2183040, 3801600, 6262080, 9856704, 14938560, 21927360, 31315200, 43672320, 59652864, 80000640, 105554880, 137256000, 176151360, 223401024, 280283520, 348201600, 428688000, 523411200 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

D. Zvonkine, Home Page

D. Zvonkine, Counting ramified coverings and intersection theory on Hurwitz spaces II (local structure of Hurwitz spaces and combinatorial results), Moscow Mathematical Journal, vol. 7 (2007), no. 1, 135-162.

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

O.g.f.: 192*x^4*(3*x+2)*(5*x+1)/(-1+x)^6 . - R. J. Mathar, Feb 01 2008

a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - G. C. Greubel, May 30 2016

MATHEMATICA

LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 0, 384, 4800, 25920}, 50] (* or *) Table[8 (n - 1) (n - 2) (n - 3) (6 n^2 - 37 n + 60), {n, 1, 25}] (* G. C. Greubel, May 30 2016 *)

CROSSREFS

Sequence in context: A252904 A252899 A183686 * A203980 A061403 A281656

Adjacent sequences: A134238 A134239 A134240 * A134242 A134243 A134244

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Jan 30 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 22:56 EST 2022. Contains 358406 sequences. (Running on oeis4.)