login
A134201
Number of rigid hypergroups of order n.
3
1, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
OFFSET
1,2
COMMENTS
a(n) is also the number of I-toothpicks added to the structure of the cellular automaton of A323646 when starts its n-th cycle. Column 1 of triangle A323647. - Omar E. Pol, Nov 25 2019
Also decimal expansion of 19/15. - Stefano Spezia, Mar 23 2022
REFERENCES
R. Bayon and N. Lygeros, Hyperstructures and Automorphism Groups, submitted.
F. Marty, Sur une généralisation de la notion de groupe. In Proc. 8th Congr. des Mathématiciens Scandinaves, Stockholm, pp. 45-49, 1934.
Th. Vougiouklis, The fundamental relation in hyperrings: The general hyperfield, Fourth Int. Congress Algebraic Hyperstructures and Appl. (AHA), 1991, pp. 203-211.
FORMULA
a(1) = 1, a(2) = 2, a(n) = 6 for n > 2.
G.f.: x*(1 + x + 4*x^2)/(1 - x). - Stefano Spezia, Mar 23 2022
E.g.f.: 6*exp(x) - 6 - 5*x - 2*x^2. - Elmo R. Oliveira, Aug 09 2024
MATHEMATICA
Array[If[# <= 2, #, 6] &, 105] (* Michael De Vlieger, Dec 01 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roman Bayon (roman.bayon(AT)gmail.com), Oct 14 2007
STATUS
approved