OFFSET
1,1
COMMENTS
Let f(k) be the trajectory of the Collatz iteration of the number k. Then Shaw calls a number n impure if n is in f(k) for some k < n. Shaw has an algorithm for finding congruences that the impure numbers satisfy.
LINKS
T. D. Noe, Table of n, a(n) for n=1..10000
Douglas J. Shaw, The Pure Numbers Generated by the Collatz Sequence, The Fibonacci Quarterly, Vol. 44, Number 3, August 2006, pp. 194-201.
FORMULA
Complement of A061641.
EXAMPLE
The Collatz trajectory of 3 is (3,10,5,16,8,4,2,1), showing that the numbers 4,5,8,10,16 are impure.
MATHEMATICA
c[n_] := If[EvenQ[n], n/2, 3n + 1]; nn=1000; t=Table[0, {nn}]; Do[If[t[[n]]==0, m=n; While[m=c[m]; If[nn>=m>n && t[[m]]==0, t[[m]]=n]; m>nn || t[[m]]>0]], {n, nn}]; Flatten[Position[t, _?(#>0&)]]
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Oct 12 2007
STATUS
approved