%I #19 Jun 20 2024 08:48:23
%S 0,0,1,1,1,1,2,2,2,1,1,2,3,2,3,1,4,3,3,3,2,6,3,5,3,3,3,3,3,8,4,2,3,3,
%T 6,4,4,6,7,8,3,6,3,9,8,7,7,5,8,4,1,6,6,3,7,1,6,6,4,8,1,5,5,8,9,11,10,
%U 6,8,16,13,9,12,6,7,8,4,16,9,6,13,10,9,5,6,6,8,11,16,11,13,6,6,6,17,9,6,6,4
%N Let T(n) = (p, p+2) denote the n-th pair of twin primes. Let S(n) = 2p+2 (see A054735). Then a(n) = number of ways of writing S(n) as S(i) + S(j) with i <= j < m.
%C It is conjectured that a(n) > 0 for n >= 3.
%D R. K. Guy, ed., Unsolved Problems, Western Number Theory Meeting, Las Vegas, 1988.
%H Dmitry Kamenetsky, <a href="/A134143/b134143.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..680 from James A. Sellers and R. J. Mathar)
%e a(4) = 1 because S(4) = 17+19 = (5+7) + (11+13) = S(2)+S(3) and this is the only such way to write S(4) as the sum S(i) + S(j) for i <= j < 4.
%p with(numtheory): Sset := {}; for i from 1 to 5000 do if ithprime(i + 1) - ithprime(i) = 2 then Sset := Sset union {2 ithprime(i) + 2} fi; od; Sset := convert(Sset, list): for n from 1 to nops(Sset) do count := 0: s := Sset[n]: for i from 1 to n do if member(s - Sset[i], Sset) and s - Sset[i] >= s/2 then count:=count + 1 fi: od: printf(`%d,`, count): od:# _James A. Sellers_, Jan 25 2008
%p A134143 := proc(n)
%p local Sn, i, j, a;
%p Sn := A054735(n);
%p a := 0;
%p for i from 1 to n-1 do
%p for j from i to n-1 do
%p if A054735(i)+A054735(j) = Sn then
%p a := a+1;
%p end if;
%p end do:
%p end do:
%p a ;
%p end proc: # _R. J. Mathar_, Jan 25 2008
%Y Cf. A001359, A014574, A054735.
%K nonn
%O 1,7
%A _N. J. A. Sloane_, Jan 25 2008
%E Terms a(5) onwards computed by _James A. Sellers_ and _R. J. Mathar_, Jan 25 2008