login
Let T(n) = (p, p+2) denote the n-th pair of twin primes. Let S(n) = 2p+2 (see A054735). Then a(n) = number of ways of writing S(n) as S(i) + S(j) with i <= j < m.
3

%I #19 Jun 20 2024 08:48:23

%S 0,0,1,1,1,1,2,2,2,1,1,2,3,2,3,1,4,3,3,3,2,6,3,5,3,3,3,3,3,8,4,2,3,3,

%T 6,4,4,6,7,8,3,6,3,9,8,7,7,5,8,4,1,6,6,3,7,1,6,6,4,8,1,5,5,8,9,11,10,

%U 6,8,16,13,9,12,6,7,8,4,16,9,6,13,10,9,5,6,6,8,11,16,11,13,6,6,6,17,9,6,6,4

%N Let T(n) = (p, p+2) denote the n-th pair of twin primes. Let S(n) = 2p+2 (see A054735). Then a(n) = number of ways of writing S(n) as S(i) + S(j) with i <= j < m.

%C It is conjectured that a(n) > 0 for n >= 3.

%D R. K. Guy, ed., Unsolved Problems, Western Number Theory Meeting, Las Vegas, 1988.

%H Dmitry Kamenetsky, <a href="/A134143/b134143.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..680 from James A. Sellers and R. J. Mathar)

%e a(4) = 1 because S(4) = 17+19 = (5+7) + (11+13) = S(2)+S(3) and this is the only such way to write S(4) as the sum S(i) + S(j) for i <= j < 4.

%p with(numtheory): Sset := {}; for i from 1 to 5000 do if ithprime(i + 1) - ithprime(i) = 2 then Sset := Sset union {2 ithprime(i) + 2} fi; od; Sset := convert(Sset, list): for n from 1 to nops(Sset) do count := 0: s := Sset[n]: for i from 1 to n do if member(s - Sset[i], Sset) and s - Sset[i] >= s/2 then count:=count + 1 fi: od: printf(`%d,`, count): od:# _James A. Sellers_, Jan 25 2008

%p A134143 := proc(n)

%p local Sn, i, j, a;

%p Sn := A054735(n);

%p a := 0;

%p for i from 1 to n-1 do

%p for j from i to n-1 do

%p if A054735(i)+A054735(j) = Sn then

%p a := a+1;

%p end if;

%p end do:

%p end do:

%p a ;

%p end proc: # _R. J. Mathar_, Jan 25 2008

%Y Cf. A001359, A014574, A054735.

%K nonn

%O 1,7

%A _N. J. A. Sloane_, Jan 25 2008

%E Terms a(5) onwards computed by _James A. Sellers_ and _R. J. Mathar_, Jan 25 2008