login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let T(n) = (p, p+2) denote the n-th pair of twin primes. Let S(n) = 2p+2 (see A054735). Then a(n) = number of ways of writing S(n) as S(i) + S(j) with i <= j < m.
3

%I #19 Jun 20 2024 08:48:23

%S 0,0,1,1,1,1,2,2,2,1,1,2,3,2,3,1,4,3,3,3,2,6,3,5,3,3,3,3,3,8,4,2,3,3,

%T 6,4,4,6,7,8,3,6,3,9,8,7,7,5,8,4,1,6,6,3,7,1,6,6,4,8,1,5,5,8,9,11,10,

%U 6,8,16,13,9,12,6,7,8,4,16,9,6,13,10,9,5,6,6,8,11,16,11,13,6,6,6,17,9,6,6,4

%N Let T(n) = (p, p+2) denote the n-th pair of twin primes. Let S(n) = 2p+2 (see A054735). Then a(n) = number of ways of writing S(n) as S(i) + S(j) with i <= j < m.

%C It is conjectured that a(n) > 0 for n >= 3.

%D R. K. Guy, ed., Unsolved Problems, Western Number Theory Meeting, Las Vegas, 1988.

%H Dmitry Kamenetsky, <a href="/A134143/b134143.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..680 from James A. Sellers and R. J. Mathar)

%e a(4) = 1 because S(4) = 17+19 = (5+7) + (11+13) = S(2)+S(3) and this is the only such way to write S(4) as the sum S(i) + S(j) for i <= j < 4.

%p with(numtheory): Sset := {}; for i from 1 to 5000 do if ithprime(i + 1) - ithprime(i) = 2 then Sset := Sset union {2 ithprime(i) + 2} fi; od; Sset := convert(Sset, list): for n from 1 to nops(Sset) do count := 0: s := Sset[n]: for i from 1 to n do if member(s - Sset[i], Sset) and s - Sset[i] >= s/2 then count:=count + 1 fi: od: printf(`%d,`, count): od:# _James A. Sellers_, Jan 25 2008

%p A134143 := proc(n)

%p local Sn, i, j, a;

%p Sn := A054735(n);

%p a := 0;

%p for i from 1 to n-1 do

%p for j from i to n-1 do

%p if A054735(i)+A054735(j) = Sn then

%p a := a+1;

%p end if;

%p end do:

%p end do:

%p a ;

%p end proc: # _R. J. Mathar_, Jan 25 2008

%Y Cf. A001359, A014574, A054735.

%K nonn

%O 1,7

%A _N. J. A. Sloane_, Jan 25 2008

%E Terms a(5) onwards computed by _James A. Sellers_ and _R. J. Mathar_, Jan 25 2008