login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134096
Define G(x) = Sum_{n>=0} a(n)*x^n/2^[n*(n-1) - A000120(n)], then [x^n] G(x)^(1/2^n) = 1 for n>=0, where A000120(n) = number of 1's in binary expansion of n.
2
1, 2, 11, 247, 87453, 30392377, 83081803051, 447717938403725, 76261525038193025805, 6426287262393575837153381, 4292008745048222678362226977889, 5685934933249315447199351722237681091
OFFSET
0,2
FORMULA
Limit_{n->infinity} Sum_{k=0..n-1} [x^k] G(x)^(1/2^n) = 2, where G(x) satisfies [x^n] G(x)^(1/2^n) = 1 for n>=0.
EXAMPLE
This sequence forms the numerators of coefficients in G(x), which begin:
[1,2,11/2,247/16,87453/2048,30392377/262144,83081803051/268435456,...].
The denominators are 2^b(n) where b(n) takes on the values:
[0,0,1,4,11,18,28,39,55,70,88,107,130,153,179,206,239,270,304,339,...]
which is b(n) = n*(n-1) - A000120(n) for n>1 with b(0)=b(1)=0.
Illustrate [x^n] G(x)^(1/2^n) = 1 for n=0..5 by:
G(x) = (1)+2x +11x^2/2 +247x^3/2^4 +87453x^4/2^11 +30392377x^5/2^18 +...;
G(x)^(1/2) = 1 +(x)+9x^2/2^2 +175x^3/2^5 +54685x^4/2^12 +16941497x^5/2^19 +..;
G(x)^(1/4) = 1 +x/2 +(x^2)+143x^3/2^6 +41437x^4/2^13 +119466176x^5/2^20 +...;
G(x)^(1/8) = 1 +x/2^2 +15x^2/2^5 +(x^3)+35541x^4/2^14 +9826265x^5/2^21 +...;
G(x)^(1/16) = 1 +x/2^3 +29x^2/2^7 +483x^3/2^10 +(x^4) +8853753x^5/2^22 +...;
G(x)^(1/32) = 1 +x/2^4 +57x^2/2^9 +1875x^3/2^13 +251395x^4/2^19 +(x^5)+...;
so that the coefficient of x^n in G(x)^(1/2^n) equals 1 for n>=0.
To illustrate that the n-th partial sums of G(x)^(1/2^n) approaches 2: at n=5, Sum_{k=0..4} [x^k] G(x)^(1/32) = 1+1/2^4+57/2^9+1875/2^13+251395/2^19 = 1.88...
PROG
(PARI) {a(n)=local(A=[1]); if(n==1, 2, for(i=0, n, A=Vec(Ser(concat(Vec(Ser(A)^(1/2^#A)), 1))^(2^#A))); A[n+1]*2^(n*(n-1))/2^subst(Pol(binary(n)), x, 1))}
CROSSREFS
Cf. A000120.
Sequence in context: A244012 A264330 A343898 * A132571 A102031 A248865
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 26 2007, Oct 29 2007
STATUS
approved