The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134096 Define G(x) = Sum_{n>=0} a(n)*x^n/2^[n*(n-1) - A000120(n)], then [x^n] G(x)^(1/2^n) = 1 for n>=0, where A000120(n) = number of 1's in binary expansion of n. 2
 1, 2, 11, 247, 87453, 30392377, 83081803051, 447717938403725, 76261525038193025805, 6426287262393575837153381, 4292008745048222678362226977889, 5685934933249315447199351722237681091 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..11. FORMULA Limit_{n->infinity} Sum_{k=0..n-1} [x^k] G(x)^(1/2^n) = 2, where G(x) satisfies [x^n] G(x)^(1/2^n) = 1 for n>=0. EXAMPLE This sequence forms the numerators of coefficients in G(x), which begin: [1,2,11/2,247/16,87453/2048,30392377/262144,83081803051/268435456,...]. The denominators are 2^b(n) where b(n) takes on the values: [0,0,1,4,11,18,28,39,55,70,88,107,130,153,179,206,239,270,304,339,...] which is b(n) = n*(n-1) - A000120(n) for n>1 with b(0)=b(1)=0. Illustrate [x^n] G(x)^(1/2^n) = 1 for n=0..5 by: G(x) = (1)+2x +11x^2/2 +247x^3/2^4 +87453x^4/2^11 +30392377x^5/2^18 +...; G(x)^(1/2) = 1 +(x)+9x^2/2^2 +175x^3/2^5 +54685x^4/2^12 +16941497x^5/2^19 +..; G(x)^(1/4) = 1 +x/2 +(x^2)+143x^3/2^6 +41437x^4/2^13 +119466176x^5/2^20 +...; G(x)^(1/8) = 1 +x/2^2 +15x^2/2^5 +(x^3)+35541x^4/2^14 +9826265x^5/2^21 +...; G(x)^(1/16) = 1 +x/2^3 +29x^2/2^7 +483x^3/2^10 +(x^4) +8853753x^5/2^22 +...; G(x)^(1/32) = 1 +x/2^4 +57x^2/2^9 +1875x^3/2^13 +251395x^4/2^19 +(x^5)+...; so that the coefficient of x^n in G(x)^(1/2^n) equals 1 for n>=0. To illustrate that the n-th partial sums of G(x)^(1/2^n) approaches 2: at n=5, Sum_{k=0..4} [x^k] G(x)^(1/32) = 1+1/2^4+57/2^9+1875/2^13+251395/2^19 = 1.88... PROG (PARI) {a(n)=local(A=[1]); if(n==1, 2, for(i=0, n, A=Vec(Ser(concat(Vec(Ser(A)^(1/2^#A)), 1))^(2^#A))); A[n+1]*2^(n*(n-1))/2^subst(Pol(binary(n)), x, 1))} CROSSREFS Cf. A000120. Sequence in context: A244012 A264330 A343898 * A132571 A102031 A248865 Adjacent sequences: A134093 A134094 A134095 * A134097 A134098 A134099 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 26 2007, Oct 29 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 19:07 EDT 2024. Contains 375173 sequences. (Running on oeis4.)