|
|
A134086
|
|
a(n) = [x^n] G(x)^(2^n) where G(x) satisfies: [x^(n+1)] G(x)^(2^n) = [x^n] G(x)^(2^n) for n>=0 and G(2x) is the g.f. of A134084.
|
|
5
|
|
|
1, 2, 8, 80, 2464, 255808, 90320512, 108630646016, 451779274750464, 6626041977171637248, 348460175972420307970048, 66523219303893985885632450560, 46531358180797100870477866170818560
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..12.
|
|
FORMULA
|
a(n) = 2^n * A134088(n).
|
|
PROG
|
(PARI) {a(n)=local(A=[1], B); for(i=1, n, A=concat(A, 0); B=Vec(Ser(A)^(2^(#A-2))); A[ #A]=(B[ #B-1]-B[ #B])/2^(#A-2)); Vec(Ser(A)^(2^n))[n+1]}
|
|
CROSSREFS
|
Cf. A134084, A134085, A134087, A134088, A134089.
Sequence in context: A134054 A323716 A229865 * A297566 A013175 A120820
Adjacent sequences: A134083 A134084 A134085 * A134087 A134088 A134089
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Paul D. Hanna, Oct 26 2007
|
|
STATUS
|
approved
|
|
|
|