Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Mar 12 2021 22:24:45
%S 1,-5,6,8,-23,12,14,-30,18,20,-40,24,31,-77,30,32,-60,48,38,-70,42,44,
%T -138,48,57,-90,54,72,-100,60,62,-184,84,68,-120,72,74,-155,96,80,
%U -239,84,108,-150,90,112,-160,120,98,-276,102,104,-240,108,110,-190,114
%N Expansion of psi(x) * phi(-x)^3 / chi(-x^3)^3 in powers of x where phi(), psi(), chi() are Ramanujan theta functions.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
%H G. C. Greubel, <a href="/A134077/b134077.txt">Table of n, a(n) for n = 0..1000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of psi(x)^4 - 9 * x * psi(x^3)^4 in powers of x where psi() is a Ramanujan theta function.
%F Expansion of x^(-1/2) * (b(x)^3 * c(x^2)^2 / (3 * c(x)))^(1/2) in powers of x where b(), c() are cubic AGM functions.
%F Expansion of q^(-1/2) * eta(q)^5 * eta(q^6)^3 / (eta(q^2) * eta(q^3)^3) in powers of q.
%F Euler transform of period 6 sequence [-5, -4, -2, -4, -5, -4, ...].
%F a(n) = b(2*n+1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = 4 - 3^(e+1), b(p^e) = (p^(e+1) - 1)/(p - 1) if p>5.
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 18 (t/i)^2 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A124449
%F G.f.: Product_{k>0} (1 - x^k)^2 * (1 - x^(2*k))^2 * (1 - x^k + x^(2*k))^3.
%F G.f.: Sum_{k>0} k * f(x^k) - 9 * k * f(x^(3*k)) where f(x) = x * (1 - x) / ((1 + x) * (1 + x^2)).
%F G.f.: f(x) - 3 * f(x^2) - 9 * f(x^3) + 2 * f(x^4) + 27 * f(x^6) - 18 * f(x^12) where f() is the g.f. of A000203.
%F a(n) = A131944(2*n + 1) = A118271(2*n + 1). a(3*n + 2) = 6 * A098098(n).
%e G.f. = 1 - 5*x + 6*x^2 + 8*x^3 - 23*x^4 + 12*x^5 + 14*x^6 - 30*x^7 + 18*x^8 + ...
%e G.f. = q - 5*q^3 + 6*q^5 + 8*q^7 - 23*q^9 + 12*q^11 + 14*q^13 - 30*q^15 + ...
%t a[ n_] := SeriesCoefficient[ (1/2) x^(-1/8) EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 4, 0, x]^3 QPochhammer[ -x^3, x^3]^3, {x, 0, n}]; (* _Michael Somos_, Oct 27 2015 *)
%t a[ n_] := SeriesCoefficient[ (1/16) x^(-1/2) (EllipticTheta[ 2, 0, x^(1/2)]^4 - 9 EllipticTheta[ 2, 0, x^(3/2)]^4), {x, 0, n}]; (* _Michael Somos_, Oct 27 2015 *)
%o (PARI) {a(n) = my(A); if ( n<0, 0, A = x * O(x^n) ; polcoeff( eta(x + A)^5 * eta(x^6 + A)^3 / ( eta(x^2 + A) * eta(x^3 + A)^3 ), n))};
%Y Cf. A000203, A098098, A118271, A124449, A131944.
%K sign
%O 0,2
%A _Michael Somos_, Oct 06 2007