The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134035 The 4 X 4 Fibonacci/ anti-Fibonacci game switched modulo 2 with its dual: MA1={{0,1},{1,1}};MB1={{0,1}{1,3}}; MA2={{0,1},1,3}};MB2={{1,0},{1,1}}; the game has two characteristic polynomials: (-3 + 5 x - 3 x^3 + x^4, -1 + x + 2 x^2 - 3 x^3 + x^4}. 0
 2, 4, 8, 13, 21, 39, 64, 138, 236, 551, 963, 2315, 4078, 9892, 17468, 42481, 75069, 182691, 322900, 785970, 1389248, 3381731, 5977491, 14550695, 25719658, 62608228, 110665760, 269388997, 476169765, 1159120239, 2048851480 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-8,8,3,-3). FORMULA M[n_] := If[Mod[n,2] == 1, {{0, 1, 0, 0}, {1, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 3, 1}}, {{0, 1, 0, 0}, {3, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 1, 1}}]; v[1] = {0, 1, 1, 0}; v[n_] := v[n] = M[n].v[n - 1] a(n) =Sum[v[n][[i]],{i,1,4}] a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -8*a(n-4) +8*a(n-5) +3*a(n-6) -3*a(n-7). G.f.: x*(2+2*x-8*x^2-7*x^3+4*x^5+3*x^6) / ( (1+x)*(3*x^4-5*x^2+1)*(x-1)^2 ). [From R. J. Mathar, May 24 2010] MATHEMATICA M[n_] := If[Mod[n, 2] == 1, {{0, 1, 0, 0}, {1, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 3, 1}}, {{0, 1, 0, 0}, {3, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 1, 1}}]; v[1] = {0, 1, 1, 0}; v[n_] := v[n] = M[n].v[n - 1]; a = Table[Apply[Plus, v[n]], {n, 1, 50}] Table[Det[M[n] - x*IdentityMatrix[4]], {n, 0, 1}] CROSSREFS Sequence in context: A164457 A164419 A164480 * A078157 A144119 A207033 Adjacent sequences:  A134032 A134033 A134034 * A134036 A134037 A134038 KEYWORD nonn,uned AUTHOR Roger L. Bagula, Jan 11 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 14:42 EST 2022. Contains 350513 sequences. (Running on oeis4.)