Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Mar 12 2021 22:24:45
%S 1,0,0,-2,2,0,0,-2,1,0,0,0,2,0,0,-2,2,0,0,-4,0,0,0,0,3,0,0,0,2,0,0,-2,
%T 0,0,0,-2,2,0,0,-4,2,0,0,0,2,0,0,0,1,0,0,-4,2,0,0,0,0,0,0,0,2,0,0,-2,
%U 4,0,0,-4,0,0,0,-2,2,0,0,0,0,0,0,-4,1,0,0
%N Expansion of (1 - phi(-q) * phi(q^4)) / 2 in powers of q where phi() is a Ramanujan theta function.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H G. C. Greubel, <a href="/A134015/b134015.txt">Table of n, a(n) for n = 1..10000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Moebius transform is period 16 sequence [ 1, -1, -1, -2, 1, 1, -1, 0, 1, -1, -1, 2, 1, 1, -1, 0, ...].
%F a(n) is multiplicative with a(2) = 0, a(2^e) = -2 if e>1, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) = (1+(-1)^e)/2 if p == 3 (mod 4).
%F a(4*n+2) = a(4*n+3) = 0.
%F G.f.: x / (1 + x^2) + x^3 / (1 + x^6) - 2 * x^4 / (1 + x^8) + ...
%F a(n) = -(-1)^n * A113406(n). -2 * a(n) = A134014(n) unless n=0. a(4*n) = -2 * A002654(n). a(4*n + 1) = A008441(n).
%e G.f. = x - 2*x^4 + 2*x^5 - 2*x^8 + x^9 + 2*x^13 - 2*x^16 + 2*x^17 + ...
%t a[ n_] := SeriesCoefficient[ (1 - EllipticTheta[ 4, 0, x] EllipticTheta[ 3, 0, x^4]) / 2, {x, 0, n}]; (* _Michael Somos_, Oct 28 2015 *)
%t a[ n_] := If[ n < 1 || Mod[n, 4] > 1, 0, (Mod[n, 2] 3 - 2) DivisorSum[ n, KroneckerSymbol[ -4, #]&]]; (* _Michael Somos_, Oct 28 2015 *)
%o (PARI) {a(n) = if( n<1 || n%4>1, 0, (n%2*3 - 2) * sumdiv(n, d, kronecker(-4, d)))};
%o (PARI) {a(n) = -(-1)^n * if( n<1, 0, qfrep([1, 0; 0, 4], n)[n])};
%Y Cf. A002654, A008441, A113406, A134014.
%K sign,mult
%O 1,4
%A _Michael Somos_, Oct 02 2007