login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = a(2) = 1; a(n+1) = round( a(n) + sqrt(3)*a(n-1) ).
1

%I #24 Aug 27 2017 12:50:19

%S 1,1,3,5,10,19,36,69,131,251,478,913,1741,3322,6338,12092,23070,44014,

%T 83972,160206,305650,583135,1112536,2122555,4049524,7725897,14739878,

%U 28121524,53651742,102359650,195287193,372579307,710826647,1356152937,2587340805

%N a(1) = a(2) = 1; a(n+1) = round( a(n) + sqrt(3)*a(n-1) ).

%H Bruno Berselli, <a href="/A133999/b133999.txt">Table of n, a(n) for n = 1..1000</a>

%e a(7) = 36 because a(6) is 19 and sqrt(3)*a(5) = 17.32, round(19+17.32) = 36

%t RecurrenceTable[{a[0] == a[1] == 1, a[n] == Floor[a[n - 1] + Sqrt[3] a[n - 2] + 1/2]}, a[n], {n, 0, 40}] (* _Bruno Berselli_, Mar 25 2014 *)

%t nxt[{a_,b_}]:={b,Round[b+a*Sqrt[3]]}; NestList[nxt,{1,1},40][[All,1]] (* _Harvey P. Dale_, Aug 27 2017 *)

%o (PARI) lista(nn) = {va = vector(nn); va[1] = 1; va[2] = 1; print1(va[1], ", ", va[2], ", "); for (n=3, nn, va[n] = round(va[n-1] + sqrt(3)*va[n-2]); print1(va[n], ", "););} \\ _Michel Marcus_, Mar 24 2014

%K nonn,easy

%O 1,3

%A _Ben Paul Thurston_, Jan 09 2008

%E More terms from _Michel Marcus_, Mar 24 2014