Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Nov 12 2017 09:33:39
%S 3,4,5,6,7,12,13,14,15,21,22,23,26,30,31,34,35,39,42,43,44,50,51,52,
%T 53,58,59,60,61,62,66,67,68,69,70,71,75,76,77,78,79,84,85,86,87,93,94,
%U 95,98,102,103,106,107,111,114,115,116,122,123,124,125,130,131,132,133,134
%N Numbers m such that binomial(m+6,m) mod 6 = 0.
%C Partial sums of the sequence 3,1,1,1,1,5,1,1,1,6,1,1,3,4,1,3,1,4,3,1,1,6,1,1,1,5,1,1,1,1,4,1,1,1,1,1,4, ... which has period 36.
%F G.f.: g(x)=3/(1-x)+ x/(1-x)^2+(4x^5+5x^9+2x^12+3x^13+2x^15+3x^17+2x^18+5x^21+3x^26+3x^32) /((1-x^36)(1-x)).
%F G.f.: g(x)=(3-2x+4x^5+5x^9+2x^12+3x^13+2x^15+3x^17+2x^18+5x^21+3x^26+3x^32-x^37) /((1-x^36)(1-x)^2).
%t Select[Range[140], Mod[Binomial[# + 6, #], 6] == 0&] (* _Jean-François Alcover_, Nov 12 2017 *)
%o (PARI) isok(n) = !(binomial(n+6, n) % 6); \\ _Michel Marcus_, Nov 12 2017
%Y Cf. A000040, A133620, A133621, A133623, A133630, A133635.
%Y Cf. A133876, A133886, A133890, A133900, A133910.
%K nonn
%O 0,1
%A _Hieronymus Fischer_, Oct 20 2007