login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = binomial(n+p,n) mod p, where p=12.
0

%I #9 May 27 2021 09:22:57

%S 1,1,7,11,8,8,0,0,6,2,2,2,4,4,4,0,3,3,9,9,0,0,0,0,0,0,0,4,4,4,8,8,5,9,

%T 3,3,8,8,8,4,10,10,6,6,0,0,0,0,3,3,9,9,0,0,4,4,4,8,8,8,0,0,0,8,5,5,7,

%U 7,4,0,0,0,6,6,6,6,0,0,0,0,3,7,1,1,8,8,8,0,0,0,8,8,8,4,4,4,9,9,3,3,0,0,0,0

%N a(n) = binomial(n+p,n) mod p, where p=12.

%C Periodic with length 6*12^2 = 864 = A133900(12).

%F a(n) = binomial(n+12,12) mod 12.

%t Table[Mod[Binomial[n+12,n],12],{n,0,110}] (* _Harvey P. Dale_, Oct 13 2017 *)

%Y Cf. A000040, A133620-A133625, A133630, A038509, A133634-A133636, A133910.

%Y See A133872, A133873, A133875, A133877, A133884, A133886, A133888, A133889, A133890 for sequences with different values of p.

%Y See A133900 for the respective periods regarding other values of p.

%K nonn

%O 0,3

%A _Hieronymus Fischer_, Oct 16 2007