login
Smallest odd prime base q such that p^9 divides q^(p-1) - 1, where p = prime(n).
6

%I #8 Jun 06 2021 19:17:36

%S 7681,39367,7812499,135967277,4715895383,822557039,48718117843,

%T 513127081109,147534349327,21203414421907,52879244321341,

%U 15069267560119,798099274499279,164129642266943,1740228634955257,149381307185023

%N Smallest odd prime base q such that p^9 divides q^(p-1) - 1, where p = prime(n).

%e a(1) = A035089(9) = 7681.

%e a(2) = A125609(9) = 39367.

%e a(3) = A125610(9) = 7812499.

%t Do[ k = 1; While[ !PowerMod[ Prime[ k ], Prime[ n ] - 1, Prime[ n ]^9 ] == 1, k++ ]; Print[ { n, Prime[ k ] } ], {n, 1, 100} ]

%Y Cf. A035089, A125609, A125610, A125611, A125612, A125632, A125633, A125634, A125635, A125636, A125637, A125645, A125646, A125647, A125648, A125649, A133860, A133861, A133862, A133863, A133864, A133865.

%K nonn

%O 1,1

%A _Alexander Adamchuk_, Sep 26 2007

%E Extended by _Max Alekseyev_, May 08 2009