login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A133837
Semiprimes from partition of sequence of positive integers.
2
6, 4, 26, 9, 10, 65, 33, 57, 21, 22, 377, 111, 39, 123, 87, 91, 95, 49, 206, 339, 121, 62, 393, 69, 141, 145, 74, 1141, 362, 93, 94, 95, 291, 505, 209, 106, 215, 219, 111, 339, 115, 1205, 253, 917, 685, 566, 289, 146, 295, 299, 303, 933, 159, 321, 489, 835, 341
OFFSET
1,1
COMMENTS
Partition the sequence of positive integers into groups of numbers that sum up to semiprimes: {1, 2, 3}, {4}, {5..8}, {9}, {10}, {11..15}, {16, 17}, {18..20}, {21}, {22}, {23..35}, {36..38}, {39}, {40..42}, {43, 44}, etc. Corresponding semiprimes are: 6, 4, 26, 9, 10, 65, 33, 57, 21, 22, 377, 111, 39, 123, 87, etc.
Is the sequence finite? See comment in A109411.
MATHEMATICA
s=Range[300]; c=0; Label[1]; i=1; p=s[[1]]; While[i<Length[s]&&Plus@@Last/@FactorInteger[p]=/=2, i++; p=Plus@@Take[s, i]]; (*Print[{i, p}] ; *)c++; a[c]=p; s=Drop[s, i]; If[Length[s]>1, Goto[1]]; Table[a[j], {j, c}]
CROSSREFS
Cf. A109411.
Sequence in context: A081631 A137174 A129886 * A211945 A121682 A237425
KEYWORD
nonn
AUTHOR
Zak Seidov, Sep 26 2007
STATUS
approved