%I #11 Mar 05 2014 15:30:51
%S 1,1,8,1,8,27,1,8,27,64,1,8,27,64,125,1,8,27,64,125,216,1,8,27,64,125,
%T 216,343,1,8,27,64,125,216,343,512,1,8,27,64,125,216,343,512,729,1,8,
%U 27,64,125,216,343,512,729,1000
%N Triangle whose rows are sequences of increasing cubes: 1; 1,8; 1,8,27; ... .
%C Reading the triangle by rows produces the sequence 1,1,8,1,8,27,1,8,27,64,..., analogous to A002260.
%H Reinhard Zumkeller, <a href="/A133820/b133820.txt">Rows n = 1..120 of triangle, flattened</a>
%F O.g.f.: (1+4qx+q^2x^2)/((1-x)(1-qx)^4) = 1 + x(1 + 8q) + x^2(1 + 8q + 27q^2) + ... .
%e Triangle starts
%e 1;
%e 1, 8;
%e 1, 8, 27;
%e 1, 8, 27, 64;
%e 1, 8, 27, 64, 125;
%t Module[{nn=10,c},c=Range[nn]^3;Flatten[Table[Take[c,n],{n,10}]]] (* _Harvey P. Dale_, Mar 05 2014 *)
%o (Haskell)
%o a133820 n k = a133820_tabl !! (n-1) !! (k-1)
%o a133820_row n = a133820_tabl !! (n-1)
%o a133820_tabl = map (`take` (tail a000578_list)) [1..]
%o -- _Reinhard Zumkeller_, Nov 11 2012
%Y Cf. A000537 (row sums), A002260, A019522, A133819, A133821, A133823.
%K easy,nonn,tabl
%O 1,3
%A _Peter Bala_, Sep 25 2007
%E Offset changed by _Reinhard Zumkeller_, Nov 11 2012