login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of runs (of equal bits) in the minimal "phinary" (A130600) representation of n.
2

%I #9 Sep 29 2018 18:45:50

%S 1,3,3,5,5,5,3,5,7,7,9,7,7,7,9,7,7,3,5,7,7,9,9,9,7,9,11,11,13,9,9,9,

%T 11,9,9,7,9,11,11,13,9,9,9,11,9,9,3,5,7,7,9,9,9,7,9,11,11,13,11,11,11,

%U 13,11,11,7,9,11,11,13,13,13,11,13,15,15,17,11,11,11,13,11,11,9,11,13,13,15,11

%N Number of runs (of equal bits) in the minimal "phinary" (A130600) representation of n.

%D Zeckendorf, E., Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.

%H Casey Mongoven, <a href="/A133772/b133772.txt">Table of n, a(n) for n = 1..199</a>

%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/phigits.html">Using Powers of Phi to represent Integers</a>.

%e A130600(3)=10001 because phi^2 + phi^-2 = 3; 10001 has 3 runs: 1,000,1. So a(3)=3.

%Y Cf. A133773, A130600.

%K nonn

%O 1,2

%A _Casey Mongoven_, Sep 23 2007