OFFSET
1,1
COMMENTS
These pentagonal numbers P(k) that can be represented as the sum of P(i)+j^2, i,j>0, are at k= 2, 6, 9, 10, 13, 17, 21, 22, 24, 26, 29, 34, 35, 38, 41, 45, 46, 53. Are almost all positive integers in this sequence and, if so, what is the largest value in the complement? The largest square in the complement? The largest pentagonal number in the complement?
EXAMPLE
Let P(n) = n-th pentagonal number:
a(1) = P(1) + 1^2 = 1 + 1 = 2.
a(2) = P(1) + 2^2 = 1 + 4 = 5 = P(2).
a(3) = P(2) + 1^2 = 5 + 1 = 6.
a(4) = P(2) + 2^2 = 5 + 4 = 9 = 3^2.
a(5) = P(1) + 3^2 = 1 + 9 = 10 = a(P(2)).
a(8) = P(3) + 2^2 = 12 + 4 = 16 = 4^2.
a(10) = P(2) + 4^2 = 5 + 16 = P(3) + 3^2 = 12 + 9 = 21.
a(12) = P(1) + 5^2 = 1 + 25 = P(4) + 2^2 = 22 + 4 = 26 = a(P(3)).
a(16) = P(5) + 1^2 = 35 + 1 = 36 = 6^2.
a(17) = P(1) + 6^2 = 1 + 36 = P(3) + 5^2 = 12 + 25 = 37.
a(25) = P(5) + 4^2 = 35 + 16 = 51 = P(6).
a(30) = P(6) + 3^2 = 51 + 9 = P(5) + 5^2 = 35 + 25 = 60.
a(35) = P(7) + 1^2 = 70 + 1 = P(5) + 6^2 = 35 + 36 = P(4) + 7^2 = 22 + 49 = 71 = a(P(5)).
a(37) = P(6) + 5^2 = 51 + 25 = P(3) + 8^2 = 12 + 64 = 76.
a(41) = P(7) + 4^2 = 70 + 16 = P(4) + 8^2 = 22 + 64 = 86.
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jan 21 2008
EXTENSIONS
Corrected and extended by R. J. Mathar, Jan 21 2008
STATUS
approved